A Comparative Study of Soil Liquefaction Assessment Using Machine Learning Models

被引:0
|
作者
Shadi M. Hanandeh
Wassel A. Al-Bodour
Mustafa M. Hajij
机构
[1] Al-Balqa Applied University,Department of Civil Engineering
[2] The University of Jordan,Department of Civil Engineering
[3] Santa Clara University,Department of Mathematics and Computer Science Department
关键词
Supervised machine learning classifiers; Liquefaction; Cyclic resistance; Cyclic stress ratio;
D O I
暂无
中图分类号
学科分类号
摘要
Liquefaction of saturated granular soils is marked by the total loss of shear strength of soil under dynamic cyclic or transient loading conditions due to excess pore water pressure that builds up to produce a soil regime that mechanically performs as a liquid. The cone penetration test (CPT) is widely recognized as a means of evaluating liquefaction susceptibility. This study presents a comparative supervised machine learning-based assessment for CPT-based liquefaction data. In particular, this study views soil liquefaction as a binary classification problem, whether the soil is liquefied or not, by utilizing three supervised machine learning classifiers: support vector machine, Decision Trees, and Quadratic Discrimination Analysis. To build the supervised machine learning models, three different soil characterization data sets were selected by performing CPTs at specific locations. The first input data (input data-1) is constructed as a function of the Mean Grain Size (D50), Measured CPT Tip Resistance (qc), Earthquake Magnitude (M), and Cyclic Shear Resistance (CSR). The second input data (input data-2) employed D50, Normalized CPT Tip Resistance (qc−1), M, CSR. Finally, the third input data (input data-3) consists of D50, qc−1, M, the Maximum Ground Acceleration (amax), Effective Vertical Overburden Stress, and Total Overburden Stress. The significance feature analysis shows the most important feature for assessing liquefaction susceptibility in the soil using input data for model 1 is measured CPT Tip Resistance, for input data model 2 it is normalized CPT Tip Resistance, and finally, for input data model 3, it is measured CPT Tip Resistance. Conclusively, this study proposed simple and quick approaches to evaluate soil liquefaction susceptibility without complicated calculations.
引用
收藏
页码:4721 / 4734
页数:13
相关论文
共 50 条
  • [31] A comparative assessment of gully erosion spatial predictive modeling using statistical and machine learning models
    Soleimanpour, Seyed Masoud
    Pourghasemi, Hamid Reza
    Zare, Maryam
    CATENA, 2021, 207
  • [32] Assessment of Landslide Susceptibility using Geospatial Techniques: A Comparative Evaluation of Machine Learning and Statistical Models
    Raut, Subrata
    Dutta, Dipanwita
    Bera, Debarati
    Samanta, Rajeeb
    GEOLOGICAL JOURNAL, 2024,
  • [33] Prediction of Soil Liquefaction Triggering Using Rule-Based Interpretable Machine Learning
    Torres, Emerzon
    Dungca, Jonathan
    GEOSCIENCES, 2024, 14 (06)
  • [34] Comparative Assessment of Physical and Machine Learning Models for Wind Power Estimation: A Case Study for Hungary
    Gerse, Agnes
    Dineva, Adrienn
    Fleiner, Rita
    ACTA POLYTECHNICA HUNGARICA, 2024, 21 (10) : 205 - 222
  • [35] Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study
    Safavi, Vahid
    Vaniar, Arash Mohammadi
    Bazmohammadi, Najmeh
    Vasquez, Juan C.
    Guerrero, Josep M.
    INFORMATION, 2024, 15 (03)
  • [36] Credit Card Fraud Detection Using Machine Learning and Predictive Models: A Comparative Study
    Sontakke, Atharv
    Yewale, Mrunali
    Zambare, Sejal
    Tendulkar, Sakshi
    Chaudhari, Anagha
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 171 - 180
  • [37] Comparative Assessment of Machine Learning Models for Predicting Glucose Intolerance Risk
    B. P. Pradeep Kumar
    H. M. Manoj
    SN Computer Science, 5 (7)
  • [38] A Comparative Study of Machine Learning Models for Daily and Weekly Rainfall ForecastingA Comparative Study of Machine Learning Models for Daily and Weekly Rainfall ForecastingVijendra Kumar
    Vijendra Kumar
    Naresh Kedam
    Ozgur Kisi
    Saleh Alsulamy
    Khaled Mohamed Khedher
    Mohamed Abdelaziz Salem
    Water Resources Management, 2025, 39 (1) : 271 - 290
  • [39] Soil-Compressibility Prediction Models Using Machine Learning
    Kirts, Scott P. E.
    Panagopoulos, Orestis P.
    Xanthopoulos, Petros
    Nam, Boo Hyun
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2018, 32 (01)
  • [40] Prediction of Soil Compaction Parameters Using Machine Learning Models
    Li, Bingyi
    You, Zixuan
    Ni, Kaiwei
    Wang, Yuexiang
    APPLIED SCIENCES-BASEL, 2024, 14 (07):