Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery

被引:0
|
作者
Seung Yeun Chung
Jee Suk Chang
Min Seo Choi
Yongjin Chang
Byong Su Choi
Jaehee Chun
Ki Chang Keum
Jin Sung Kim
Yong Bae Kim
机构
[1] Yonsei University College of Medicine,Department of Radiation Oncology, Yonsei Cancer Center
[2] Ajou University School of Medicine,Department of Radiation Oncology
[3] CorelineSoft,undefined
[4] Co,undefined
来源
关键词
Breast cancer; Auto-segmentation; Deep learning; Clinical target volume; Organs-at-risk;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Deep Learning-Based Auto-Segmentation of Glioblastoma in Brain Cancer Radiotherapy
    Sadeghi, S.
    Gholami, S.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [42] Mammographic Density and the Risk of Breast Cancer Recurrence After Breast-Conserving Surgery
    Cil, Tulin
    Fishell, Eve
    Hanna, Wedad
    Sun, Ping
    Rawlinson, Ellen
    Narod, Steven A.
    McCready, David R.
    CANCER, 2009, 115 (24) : 5780 - 5787
  • [43] Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy
    Savenije, Mark H. F.
    Maspero, Matteo
    Sikkes, Gonda G.
    van der Voort van Zyp, Jochem R. N.
    T. J. Kotte, Alexis N.
    Bol, Gijsbert H.
    T. van den Berg, Cornelis A.
    RADIATION ONCOLOGY, 2020, 15 (01)
  • [44] Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy
    Mark H. F. Savenije
    Matteo Maspero
    Gonda G. Sikkes
    Jochem R. N. van der Voort van Zyp
    Alexis N. T. J. Kotte
    Gijsbert H. Bol
    Cornelis A. T. van den Berg
    Radiation Oncology, 15
  • [45] Analysis on risk factors of recurrence and metastasis of breast cancer after breast-conserving surgery for patients with breast cancer.
    Xia, Hai-Ping
    Gao, Shao-Rong
    Zhang, Xin-Feng
    Zhou, Fu-Xin
    Liu, Chang-Jiang
    Chen, Song
    Ren, Wei
    Ma, Tao
    Liu, Zi-Yong
    BIOMEDICAL RESEARCH-INDIA, 2017, 28 (16): : 7047 - 7050
  • [46] Clinical Validation of Artificial Intelligence Based Auto-Segmentation of Organs-at-Risk in Total Marrow Irradiation Treatment
    Liu, A.
    Germino, E. A.
    Han, C.
    Watkins, W. T.
    Amini, A.
    Wong, J. Y. C.
    Williams, T. M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E302 - E303
  • [47] Feasibility of concurrent adjuvant chemotherapy and radiotherapy after breast-conserving surgery in early breast cancer
    不详
    BREAST, 2005, 14 : S32 - S32
  • [48] Clinical evaluation of a deep learning model for segmentation of target volumes in breast cancer radiotherapy
    Buelens, P.
    Willems, S.
    Vandewinckele, L.
    Crijns, W.
    Maes, F.
    Weltens, C. G.
    RADIOTHERAPY AND ONCOLOGY, 2022, 171 : 84 - 90
  • [49] Feasibility of concurrent adjuvant chemotherapy and radiotherapy after breast-conserving surgery in early breast cancer
    Han, Sehwan
    Kim, Juree
    Sohn, Seungchang
    Kwak, Geum-Hee
    Kim, Ji-Young
    Park, Kyeongmee
    JOURNAL OF SURGICAL ONCOLOGY, 2007, 95 (01) : 45 - 50
  • [50] Mammographic density and risk for reexcision after breast-conserving surgery for primary breast cancer
    Bani, M.
    Heusinger, K.
    Lux, M. P.
    Wenkel, E.
    Magener, A.
    Hartmann, A.
    Schulz-Wendtland, R.
    Beckmann, M. W.
    Fasching, P. A.
    ONKOLOGIE, 2008, 31 : 52 - 52