Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery

被引:0
|
作者
Seung Yeun Chung
Jee Suk Chang
Min Seo Choi
Yongjin Chang
Byong Su Choi
Jaehee Chun
Ki Chang Keum
Jin Sung Kim
Yong Bae Kim
机构
[1] Yonsei University College of Medicine,Department of Radiation Oncology, Yonsei Cancer Center
[2] Ajou University School of Medicine,Department of Radiation Oncology
[3] CorelineSoft,undefined
[4] Co,undefined
来源
关键词
Breast cancer; Auto-segmentation; Deep learning; Clinical target volume; Organs-at-risk;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery
    Chung, Seung Yeun
    Chang, Jee Suk
    Choi, Min Seo
    Chang, Yongjin
    Choi, Byong Su
    Chun, Jaehee
    Keum, Ki Chang
    Kim, Jin Sung
    Kim, Yong Bae
    RADIATION ONCOLOGY, 2021, 16 (01)
  • [2] Evaluation of Deep Learning-Based Auto-Segmentation of Target Volume and Organs-at-Risk in Breast Cancer Patients
    Chung, S. Y.
    Chang, J. S.
    Chang, Y.
    Choi, B. S.
    Chun, J.
    Kim, J. S.
    Kim, Y. B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E779 - E779
  • [3] Evaluation of Deep Learning-Based Auto-Segmentation of Organs-at-Risk for Breast Cancer Radiation Therapy
    Byun, H. K.
    Chang, J. S.
    Choi, M. S.
    Chun, J.
    Jung, J.
    Jeong, C.
    Kim, J. S.
    Chang, Y.
    Lee, S.
    Kim, Y. B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E108 - E108
  • [4] DEEP LEARNING-BASED AUTO-SEGMENTATION FOR PELVIC ORGANS-AT-RISK AND CLINICAL TARGET VOLUMES IN INTRACAVITARY HIGH DOSE RATE BRACHYTHERAPY
    Wong, Jordan
    Kolbeck, Carter
    Giambattista, Jonathan
    Giambattista, Joshua
    Huang, Vicky
    Jaswal, Jasbir
    RADIOTHERAPY AND ONCOLOGY, 2020, 150 : S34 - S34
  • [5] Evaluation of Deep Learning-Based Auto-Segmentation of Target Volume and Normal Organs in Breast Cancer Patients
    Chung, S. Y.
    Chang, J. S.
    Chang, Y.
    Choi, B. S.
    Chun, J.
    Kim, J. S.
    Kim, Y. B.
    MEDICAL PHYSICS, 2020, 47 (06) : E613 - E614
  • [6] Clinical Feasibility of Commercial Artificial Intelligence-Based Auto Contouring of Target Volumes and Organs-at-Risk in Breast Cancer Patients
    Peng, J. L.
    McDonald, D. G.
    Godwin, W.
    Warwick, L.
    Roles, S. A.
    Maynard, M.
    Winiecki, J.
    Rapchak, A.
    Owen, G.
    Mart, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E585 - E585
  • [7] Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
    Ma, Chen-Ying
    Zhou, Ju-Ying
    Xu, Xiao-Ting
    Guo, Jian
    Han, Miao-Fei
    Gao, Yao-Zong
    Du, Hui
    Stahl, Johannes N.
    Maltz, Jonathan S.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (02):
  • [8] Deep Learning-based Auto-Segmentation for Pelvic Organs at Risk and Clinical Target Volumes in Intracavitary High Dose Rate Brachytherapy
    Wong, J.
    Kolbeck, C.
    Giambattista, J.
    Giambattista, J. A.
    Huang, V.
    Jaswal, J. K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E284 - E284
  • [9] The dosimetric impact of deep learning-based organs at risk auto-segmentation
    Guo, H.
    Xia, X.
    Zhong, Y.
    Peng, J.
    Hu, W.
    Wang, J.
    Zhang, Z.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1370 - S1371
  • [10] Evaluation of deep learning-based auto-segmentation of OARs for breast cancer radiotherapy
    Byun, H. K.
    Chang, J. S.
    Choi, M. S.
    Chun, J.
    Jung, J.
    Jeong, C.
    Kim, J. S.
    Chang, Y.
    Lee, S.
    Kim, Y. B.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S952 - S952