Superelements Modelling in Flexible Multibody Dynamics

被引:2
|
作者
Alberto Cardona
机构
[1] Universidad Nacional del Litoral/Conicet,Centro Internacional de Métodos Computacionales en Ingenierí a (CIMEC), INTEC –
[2] Güemes,undefined
来源
关键词
multibody systems; nonlinear dynamics; mechanisms;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new implementation of substructuring methods forflexible multibody analysis. In previous developed formulations, wefixed the local axes of the superelement to one node. In thisformulation, the reference frame is floating and close, in some sense,to the body center. The local frame is selected based on the positionsof the interface nodes of the superelement, and completely independentof the order in which the nodes of the superelement are given.Therefore, the superelement itself depends only on the nodes positions,and on the mass and stiffness properties, thus allowing a very easyinterfacing between the finite element program which computed thesuperelement and the mechanism analysis program.
引用
收藏
页码:245 / 266
页数:21
相关论文
共 50 条
  • [41] Port-Hamiltonian flexible multibody dynamics
    Andrea Brugnoli
    Daniel Alazard
    Valérie Pommier-Budinger
    Denis Matignon
    Multibody System Dynamics, 2021, 51 : 343 - 375
  • [42] Flexible multibody dynamics analysis of automobile engine
    Inagaki, Mizuho
    Kawamoto, Atsushi
    Aoyama, Takayuki
    Kawaguchi, Atsushi
    Mori, Nobuyuki
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 1751 - 1759
  • [43] Multibody Dynamics of Very Flexible Damped Systems
    R.G. Langlois
    R.J. Anderson
    Multibody System Dynamics, 1999, 3 : 109 - 136
  • [44] Multibody dynamics incorporating deployment of flexible structures
    Tadikonda, SSK
    Singh, RP
    Stornelli, S
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1996, 118 (02): : 237 - 241
  • [45] On the geometric stiffness matrices in flexible multibody dynamics
    Tadikonda, SSK
    Chang, HT
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (04): : 452 - 461
  • [46] A VARIATIONAL APPROACH TO DYNAMICS OF FLEXIBLE MULTIBODY SYSTEMS
    WU, SC
    HAUG, EJ
    KIM, SS
    MECHANICS OF STRUCTURES AND MACHINES, 1989, 17 (01): : 3 - 32
  • [47] Multibody dynamics of very flexible damped systems
    Langlois, RG
    Anderson, RJ
    MULTIBODY SYSTEM DYNAMICS, 1999, 3 (02) : 109 - 136
  • [48] TIMOSHENKO BEAMS AND FLEXIBLE MULTIBODY SYSTEM DYNAMICS
    BAKR, EM
    SHABANA, AA
    JOURNAL OF SOUND AND VIBRATION, 1987, 116 (01) : 89 - 107
  • [49] Trivariate Isogeometric Analysis for Flexible Multibody Dynamics
    Pi, Ting
    ADVANCES IN MECHANICAL ENGINEERING, 2015,
  • [50] Isogeometric shell discretizations for flexible multibody dynamics
    Goyal, Anmol
    Doerfel, Michael R.
    Simeon, Bernd
    Anh-Vu Vuong
    MULTIBODY SYSTEM DYNAMICS, 2013, 30 (02) : 139 - 151