Optimal process parameters under LINEX loss function with general input quality characteristic

被引:0
|
作者
Chad R. Bhatti
Jennifer L. Wightman
机构
[1] Tulane University,Department of Mathematics
[2] Coastal Carolina University,Department of Mathematics and Statistics
来源
Quality & Quantity | 2009年 / 43卷
关键词
Asymmetric loss function; Taguchi quality model; Gamma distribution; Double exponential distribution; Laplace distribution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we generalize the quality and cost trade-off problem of Chang and Hung (Qual Quant 41: 291–301, 2007) under the LINEX loss function. We consider the general input characteristic given by the random variable X with moment generating function mX(t) and output characteristic given by the deterministic transformation Y  =  g(X). The two cases we consider are when g(X) is an affine function of X and X follows (1) the gamma distribution, and (2) the double exponential distribution.
引用
收藏
页码:965 / 975
页数:10
相关论文
共 50 条
  • [31] Bayesian Estimation of Products With Wiener Process Degradation Based on Linex Loss Function
    Song, Bao-Wei
    Yan, Wei-An
    Mao, Zhao-Yong
    Duan, Gui-Lin
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (QR2MSE), VOLS I-IV, 2013, : 138 - 144
  • [32] Bayesian Estimation for the Pareto Income Distribution under Asymmetric LINEX Loss Function
    Ertefaie, Ashkan
    Parsian, Ahmad
    JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2005, 4 (02): : 113 - 133
  • [33] Survival Bayesian Estimation of Exponential-Gamma Under Linex Loss Function
    Rizki, S. W.
    Mara, M. N.
    Sulistianingsih, E.
    INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [34] A some times pool estimator of mean life under LINEX loss function
    Rai, O
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (09) : 2057 - 2067
  • [35] On estimating the location parameter of the selected exponential population under the LINEX loss function
    Arshad, Mohd
    Abdalghani, Omer
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2020, 34 (01) : 167 - 182
  • [36] APPROXIMATE BAYES ESTIMATION OF THE WEIBULL DISTRIBUTION UNDER WEIGHTED LINEX LOSS FUNCTION
    Alduais, Fuad S.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2022, 72 (01) : 25 - 39
  • [37] ON THE ADMISSIBILITY OF AN ESTIMATOR OF A NORMAL-MEAN VECTOR UNDER A LINEX LOSS FUNCTION
    PARSIAN, A
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1990, 42 (04) : 657 - 669
  • [38] On the Admissibility of Linear Estimators in a Multivariate Normal Distribution Under LINEX Loss Function
    Tanaka, Hidekazu
    Tatsukawa, Masashi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (17) : 3011 - 3020
  • [39] Determining the optimum process mean under quality loss function
    Chen, CH
    Chou, CY
    Huang, KW
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2002, 20 (08): : 598 - 602
  • [40] Determining the Optimum Process Mean Under Quality Loss Function
    C.-H. Chen
    C.-Y. Chou
    K.-W. Huang
    The International Journal of Advanced Manufacturing Technology, 2002, 20 : 598 - 602