Formal Symplectic Groupoid of a Deformation Quantization

被引:0
|
作者
Alexander V. Karabegov
机构
[1] Abilene Christian University,Department of Mathematics and Computer Science
来源
关键词
Neural Network; Manifold; Statistical Physic; Complex System; Nonlinear Dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
We give a self-contained algebraic description of a formal symplectic groupoid over a Poisson manifold M. To each natural star product on M we then associate a canonical formal symplectic groupoid over M. Finally, we construct a unique formal symplectic groupoid ‘with separation of variables’ over an arbitrary Kähler-Poisson manifold.
引用
收藏
页码:223 / 256
页数:33
相关论文
共 50 条
  • [31] Formal GNS Construction and States in Deformation Quantization
    Martin Bordemann
    Stefan Waldmann
    Communications in Mathematical Physics, 1998, 195 : 549 - 583
  • [32] A Remark on Formal KMS States in Deformation Quantization
    Martin Bordemann
    Hartmann Römer
    Stefan Waldmann
    Letters in Mathematical Physics, 1998, 45 : 49 - 61
  • [33] DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    ANNALS OF PHYSICS, 1978, 111 (01) : 61 - 110
  • [34] Fedosov Deformation Quantization with some Family of Compatible Symplectic Connections
    Tosiek, J.
    XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS, 2010, 1307 : 169 - 174
  • [35] Stacks of quantization-deformation modules on complex symplectic manifolds
    Polesello, P
    Schapira, PR
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (49) : 2637 - 2664
  • [36] Roots of the characteristic equation for the symplectic groupoid
    Chekhov, L. O.
    Shapiro, M. Z.
    Shibo, H.
    RUSSIAN MATHEMATICAL SURVEYS, 2022, 77 (03) : 552 - 554
  • [37] Strict deformation quantization for actions of a class of symplectic Lie groups
    Bieliavsky, P
    Massar, M
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2001, (144): : 1 - 21
  • [38] On quasi-symplectic groupoid reduction
    Ding, Hao
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 311 - 324
  • [39] Formal GNS construction and WKB expansion in deformation quantization
    Bordemann, M
    Waldmann, S
    DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 315 - 319
  • [40] Non-Formal Deformation Quantization and Symmetric Spaces
    Bieliavsky, P.
    GEOMETRIC METHODS IN PHYSICS, 2009, 1191 : 30 - 45