High-fidelity four-photon GHZ states on chip

被引:8
|
作者
Pont, Mathias [1 ]
Corrielli, Giacomo [2 ]
Fyrillas, Andreas [3 ]
Agresti, Iris [4 ,5 ]
Carvacho, Gonzalo [4 ]
Maring, Nicolas [3 ]
Emeriau, Pierre-Emmanuel [3 ]
Ceccarelli, Francesco [2 ]
Albiero, Ricardo [2 ]
Ferreira, Paulo Henrique Dias [2 ,6 ]
Somaschi, Niccolo [3 ]
Senellart, Jean [3 ]
Sagnes, Isabelle [1 ]
Morassi, Martina [1 ]
Lemaitre, Aristide [1 ]
Senellart, Pascale [1 ]
Sciarrino, Fabio [4 ]
Liscidini, Marco [7 ]
Belabas, Nadia [1 ]
Osellame, Roberto [2 ]
机构
[1] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, UMR 9001, 10 Blvd Thomas Gobert, F-91120 Palaiseau, France
[2] CNR, Ist Foton & Nanotecnol, IFN, Pza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Quandela SAS, 7 Rue Leonard de Vinci, F-91300 Massy, France
[4] Sapienza Univ Roma, Dipartimento Fis, Ple Aldo Moro 5, I-00185 Rome, Italy
[5] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[6] Univ Fed Sao Carlos, Phys Dept, BR-13565905 Sao Carlos, SP, Brazil
[7] Univ Pavia, Dipartimento Fis, Via Bassi 6, I-27100 Pavia, Italy
基金
巴西圣保罗研究基金会;
关键词
SINGLE-PHOTON SOURCES; ENTANGLEMENT; GENERATION;
D O I
10.1038/s41534-024-00830-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high fidelity generation of 4-photon Greenberg-Horne-Zeilinger (GHZ) states with a low-loss reconfigurable glass photonic circuit. We reconstruct the density matrix of the generated states using full quantum-state tomography reaching an experimental fidelity to the target state of F GHZ 4 = ( 86.0 +/- 0.4 ) % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{\mathcal{F}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(86.0\pm 0.4)\, \%$$\end{document} , and a purity of P GHZ 4 = ( 76.3 +/- 0.6 ) % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{\mathcal{P}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(76.3\pm 0.6)\, \%$$\end{document} . The entanglement of the generated states is certified with a semi device-independent approach through the violation of a Bell-like inequality by more than 39 standard deviations. Finally, we carry out a four-partite quantum secret sharing protocol on-chip where a regulator shares with three interlocutors a sifted key with up to 1978 bits, achieving a qubit-error rate of 10.87%. These results establish that the quantum-dot technology combined with glass photonic circuitry offers a viable path for entanglement generation and distribution.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Nonclassical properties of generalized four-photon coherent states
    Dehghani, Alireza
    Mojaveri, Bashir
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (11):
  • [22] Generation of four-photon GHZ states based on interaction between a four-level atom and two bimodal cavities
    Zhang, Deng-yu
    Tang, Shi-qing
    Wang, Xin-wen
    Xie, Li-jun
    Zhan, Xiao-gui
    Chen, Yin-hua
    Optoelectronics Letters, 2012, 8 (02) : 150 - 152
  • [23] Scheme for generating a superposition of two- and four-photon maximally entangled states: Application to four-photon quantum photolithography
    Gerry, CC
    Benmoussa, A
    PHYSICAL REVIEW A, 2002, 66 (03): : 6
  • [24] High-fidelity photon-subtraction operation for large-photon-number Fock states
    Zhang, Shengli
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [25] Entangler and analyzer for four-photon χ-type entangled states
    Wang, Meiyu
    Yan, Fengli
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (12):
  • [26] A Reconfigurable Silicon Generator of Four-Photon Entangled States
    Vigliar, Caterina
    Adcock, Jeremy C.
    Santagati, Raffaele
    Silverstone, Joshua W.
    Thompson, Mark G.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [27] Scheme for generating a superposition of two- and four-photon maximally entangled states: Application to four-photon quantum photolithography
    Gerry, Christopher C.
    Benmoussa, A.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (03): : 338041 - 338046
  • [28] Generation of four-photon GHZ states based on interaction between a four-level atom and two bimodal cavities
    张登玉
    唐世清
    汪新文
    谢利军
    詹孝贵
    陈银花
    OptoelectronicsLetters, 2012, 8 (02) : 150 - 152
  • [29] Four-photon coherent states. Properties and generation
    Hach, E.E.
    Gerry, C.C.
    Journal of Modern Optics, 1992, 39 (12)
  • [30] Nonclassical properties of generalized four-photon coherent states
    Alireza Dehghani
    Bashir Mojaveri
    The European Physical Journal D, 2017, 71