High-fidelity four-photon GHZ states on chip

被引:8
|
作者
Pont, Mathias [1 ]
Corrielli, Giacomo [2 ]
Fyrillas, Andreas [3 ]
Agresti, Iris [4 ,5 ]
Carvacho, Gonzalo [4 ]
Maring, Nicolas [3 ]
Emeriau, Pierre-Emmanuel [3 ]
Ceccarelli, Francesco [2 ]
Albiero, Ricardo [2 ]
Ferreira, Paulo Henrique Dias [2 ,6 ]
Somaschi, Niccolo [3 ]
Senellart, Jean [3 ]
Sagnes, Isabelle [1 ]
Morassi, Martina [1 ]
Lemaitre, Aristide [1 ]
Senellart, Pascale [1 ]
Sciarrino, Fabio [4 ]
Liscidini, Marco [7 ]
Belabas, Nadia [1 ]
Osellame, Roberto [2 ]
机构
[1] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, UMR 9001, 10 Blvd Thomas Gobert, F-91120 Palaiseau, France
[2] CNR, Ist Foton & Nanotecnol, IFN, Pza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Quandela SAS, 7 Rue Leonard de Vinci, F-91300 Massy, France
[4] Sapienza Univ Roma, Dipartimento Fis, Ple Aldo Moro 5, I-00185 Rome, Italy
[5] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[6] Univ Fed Sao Carlos, Phys Dept, BR-13565905 Sao Carlos, SP, Brazil
[7] Univ Pavia, Dipartimento Fis, Via Bassi 6, I-27100 Pavia, Italy
基金
巴西圣保罗研究基金会;
关键词
SINGLE-PHOTON SOURCES; ENTANGLEMENT; GENERATION;
D O I
10.1038/s41534-024-00830-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high fidelity generation of 4-photon Greenberg-Horne-Zeilinger (GHZ) states with a low-loss reconfigurable glass photonic circuit. We reconstruct the density matrix of the generated states using full quantum-state tomography reaching an experimental fidelity to the target state of F GHZ 4 = ( 86.0 +/- 0.4 ) % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{\mathcal{F}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(86.0\pm 0.4)\, \%$$\end{document} , and a purity of P GHZ 4 = ( 76.3 +/- 0.6 ) % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{\mathcal{P}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(76.3\pm 0.6)\, \%$$\end{document} . The entanglement of the generated states is certified with a semi device-independent approach through the violation of a Bell-like inequality by more than 39 standard deviations. Finally, we carry out a four-partite quantum secret sharing protocol on-chip where a regulator shares with three interlocutors a sifted key with up to 1978 bits, achieving a qubit-error rate of 10.87%. These results establish that the quantum-dot technology combined with glass photonic circuitry offers a viable path for entanglement generation and distribution.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] High-fidelity source of four-photon entanglement
    Gaertner, S
    Bourennane, M
    Eibl, M
    Kurtsiefer, C
    Weinfurter, H
    APPLIED PHYSICS B-LASERS AND OPTICS, 2003, 77 (08): : 803 - 807
  • [2] High-fidelity source of four-photon entanglement
    S. Gaertner
    M. Bourennane
    M. Eibl
    C. Kurtsiefer
    H. Weinfurter
    Applied Physics B, 2003, 77 : 803 - 807
  • [3] Experimental demonstration of four-photon entanglement and high-fidelity teleportation
    Pan, JW
    Daniell, M
    Gasparoni, S
    Weihs, G
    Zeilinger, A
    PHYSICAL REVIEW LETTERS, 2001, 86 (20) : 4435 - 4438
  • [4] Experimental generation of a high-fidelity four-photon linear cluster state
    Zhang, Chao
    Huang, Yun-Feng
    Liu, Bi-Heng
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [5] Noise contributions in on-chip four-photon states
    Zhang, Yanbing
    Islam, Mehedi
    Roztocki, Piotr
    Reimer, Christian
    Sciara, Stefania
    Fischer, Bennet
    Bromberg, Yaron
    Caspani, Lucia
    Chu, Sai T.
    Little, Brent E.
    Moss, David J.
    Kues, Michael
    Morandotti, Roberto
    2018 PHOTONICS NORTH (PN), 2018,
  • [6] Programmable four-photon graph states on a silicon chip
    Jeremy C. Adcock
    Caterina Vigliar
    Raffaele Santagati
    Joshua W. Silverstone
    Mark G. Thompson
    Nature Communications, 10
  • [7] Programmable four-photon graph states on a silicon chip
    Adcock, Jeremy C.
    Vigliar, Caterina
    Santagati, Raffaele
    Silverstone, Joshua W.
    Thompson, Mark G.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] On-chip Generation of Four-Photon Entangled Qubit States
    Reimer, Christian
    Kues, Michael
    Rortocki, Piotr
    Caspani, Lucia
    Bromberg, Yaron
    Wetzel, Benjamin
    Little, Brent E.
    Chu, Sai T.
    Moss, David J.
    Morandotti, Roberto
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [9] Experimental observation of four-photon entangled Dicke state with high fidelity
    Kiesel, N.
    Schmid, C.
    Toth, G.
    Solano, E.
    Weinfurter, H.
    PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [10] A Simple Scheme for the Preparation of Four-Photon GHZ States Based on Cavity QED
    Zhang Deng-Yu
    Tang Shi-Qing
    Wang Xin-Wen
    Xie Li-Jun
    Zhan Xiao-Gui
    Chen Yin-Hua
    Gao Feng
    CHINESE PHYSICS LETTERS, 2010, 27 (07)