Robust video steganography for social media sharing based on principal component analysis

被引:0
|
作者
Pingan Fan
Hong Zhang
Xianfeng Zhao
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Information Security, Institute of Information Engineering
[2] University of Chinese Academy of Sciences,School of Cyber Security
关键词
Steganography; Video; Robust; Social media; Hidden communication;
D O I
暂无
中图分类号
学科分类号
摘要
Most social media channels are lossy where videos are transcoded to reduce transmission bandwidth or storage space, such as social networking sites and video sharing platforms. Video transcoding makes most video steganographic schemes unusable for hidden communication based on social media. This paper proposes robust video steganography against video transcoding to construct reliable hidden communication on social media channels. A new strategy based on principal component analysis is provided to select robust embedding regions. Besides, side information is generated to label these selected regions. Side information compression is designed to reduce the transmission bandwidth cost. Then, one luminance component and one chrominance component are joined to embed secret messages and side information, notifying the receiver of correct extraction positions. Video preprocessing is conducted to improve the applicability of our proposed method to various video transcoding mechanisms. Experimental results have shown that our proposed method provides stronger robustness against video transcoding than other methods and achieves satisfactory security performance against steganalysis. Compared with some existing methods, our proposed method is more robust and reliable to realize hidden communication over social media channels, such as YouTube and Vimeo.
引用
收藏
相关论文
共 50 条
  • [21] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [22] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [23] Robust Stochastic Principal Component Analysis
    Goes, John
    Zhang, Teng
    Arora, Raman
    Lerman, Gilad
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 266 - 274
  • [24] Inductive Robust Principal Component Analysis
    Bao, Bing-Kun
    Liu, Guangcan
    Xu, Changsheng
    Yan, Shuicheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3794 - 3800
  • [25] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [26] Robust Principal Component Analysis on Graphs
    Shahid, Nauman
    Kalofolias, Vassilis
    Bresson, Xavier
    Bronsteint, Michael
    Vandergheynst, Pierre
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2812 - 2820
  • [27] Wavelet Speech Enhancement Based on Robust Principal Component Analysis
    Wu, Chia-Lung
    Hsu, Hsiang-Ping
    Wang, Syu-Siang
    Hung, Jeih-Weih
    Lai, Ying-Hui
    Wang, Hsin-Min
    Tsao, Yu
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 439 - 443
  • [28] Robust Principal Component Analysis Based on Maximum Correntropy Criterion
    He, Ran
    Hu, Bao-Gang
    Zheng, Wei-Shi
    Kong, Xiang-Wei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) : 1485 - 1494
  • [29] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [30] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430