Groupoid and inverse semigroup presentations of ultragraph C*-algebras

被引:0
|
作者
Alberto E. Marrero
Paul S. Muhly
机构
[1] University of Puerto Rico,Department of Mathematics
[2] The University of Iowa,Physics
来源
Semigroup Forum | 2008年 / 77卷
关键词
Inverse Semigroup; Initial Segment; Partial Isometry; Invariant Subset; Unit Space;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by the work of Paterson on C*-algebras of directed graphs, we show how to associate a groupoid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{G}_{\mathcal{G}}$\end{document} to an ultragraph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}$\end{document} in such a way that the C*-algebra of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{G}_{\mathcal{G}}$\end{document} is canonically isomorphic to Tomforde’s C*-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{*}(\mathcal{G})$\end{document} . The groupoid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{G}_{\mathcal{G}}$\end{document} is built from an inverse semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathcal{G}}$\end{document} naturally associated to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}$\end{document} .
引用
收藏
页码:399 / 422
页数:23
相关论文
共 50 条
  • [21] Regular representation of groupoid C*-algebras and applications to inverse semigroups
    Khoshkam, M
    Skandalis, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 546 : 47 - 72
  • [22] The Index Semigroup and -Groups of Graph-Groupoid -Algebras
    Cho, Ilwoo
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (01) : 57 - 109
  • [23] Presentations of semigroup algebras of weighted trees
    Manon, Christopher
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 31 (04) : 467 - 489
  • [24] Presentations of semigroup algebras of weighted trees
    Christopher Manon
    Journal of Algebraic Combinatorics, 2010, 31 : 467 - 489
  • [26] Opposite algebras of groupoid C*-algebras
    Alcides Buss
    Aidan Sims
    Israel Journal of Mathematics, 2021, 244 : 759 - 774
  • [27] Opposite algebras of groupoid C*-algebras
    Buss, Alcides
    Sims, Aidan
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 244 (02) : 759 - 774
  • [28] The ideal structure of partial skew groupoid rings with applications to topological dynamics and ultragraph algebras
    Bagio, Dirceu
    Goncalves, Daniel
    Moreira, Paula Savana Estacio
    Oinert, Johan
    FORUM MATHEMATICUM, 2024, 36 (04) : 1081 - 1117
  • [29] VARIETIES OF ASSOCIATIVE ALGEBRAS FOR WHICH THE GROUPOID OF SUBVARIETIES IS A COMMUTATIVE SEMIGROUP
    GONCHIGDORZH, R
    MALTSEV, YN
    SIBERIAN MATHEMATICAL JOURNAL, 1982, 23 (02) : 162 - 167
  • [30] Primitive Ideal Space of Ultragraph C*-algebras
    Imanfar, Mostafa
    Pourabbas, Abdolrasoul
    Larki, Hossein
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2019, 15 (01): : 147 - 158