The Fibonacci-Padovan sequence and MacWilliams transform matrices

被引:0
|
作者
N. D. Gogin
A. A. Myllari
机构
[1] University of Turku,
来源
关键词
Horizontal Section; Computer Algebra System; Dual Code; Fibonacci Number; Fibonacci Sequence;
D O I
暂无
中图分类号
学科分类号
摘要
A relationship between the MacWilliams transform matrices and the classical integer Fibonacci, Lucas, and Padovan sequences is established. Namely, it is proved that the summation over some naturally chosen planes in the pyramid composed of these matrices yields a new integer sequence, which is the convolution of the Fibonacci numbers and the (alternating) Padovan numbers. In turn, this convolution is linearly represented in terms of the Lucas numbers and the Padovan numbers.
引用
收藏
页码:74 / 79
页数:5
相关论文
共 50 条
  • [41] The Fibonacci sequence
    Zaeperel
    COMPTES RENDUS DES SEANCES DE LA SOCIETE DE BIOLOGIE ET DE SES FILIALES, 1919, 82 : 853 - 855
  • [42] Fibonacci Sequence
    Graubart, Michael
    TEMPO, 2009, 250 : 58 - 59
  • [43] Some Properties of Padovan Sequence by Matrix Methods
    Yilmaz, Fatih
    Bozkurt, Durmus
    ARS COMBINATORIA, 2012, 104 : 149 - 160
  • [44] Some Matrices with Padovan Q-Matrix Property
    Sompong, Supunnee
    Wora-Ngon, Natthaphat
    Piranan, Areeya
    Wongkaentow, Natnapa
    13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017), 2017, 1905
  • [45] A Combinatorial Interpretation of the Padovan Generalized Polynomial Sequence
    Machado Vieira, Renata Passos
    Vieira Alves, Francisco Regis
    Machado Cruz Catarino, Paula Maria
    ARMENIAN JOURNAL OF MATHEMATICS, 2023, 15 (11): : 1 - 9
  • [46] The (s, t)-Padovan Quaternions Matrix Sequence
    Machado Vieira, Renata Passos
    Vieira Alves, Francisco Regis
    Machado Cruz Catarino, Paula Maria
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2020, 52 (11): : 1 - 9
  • [47] Padovan sequence generalization - a study of matrix and generating function
    Machado Vieira, Renata Passos
    Vieira Alves, Francisco Regis
    Machado Cruz Catarino, Paula Maria
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (04) : 154 - 163
  • [48] ON THE Q ANALOGUE OF FIBONACCI AND LUCAS MATRICES AND FIBONACCI POLYNOMIALS
    Sahin, Adem
    UTILITAS MATHEMATICA, 2016, 100 : 113 - 125
  • [49] Random walk and Fibonacci matrices
    van Uem, Theo
    MUENSTER JOURNAL OF MATHEMATICS, 2022, 15 (01): : 221 - 233
  • [50] FIBONACCI-LIKE MATRICES
    MORRISON, JF
    FIBONACCI QUARTERLY, 1989, 27 (01): : 47 - 48