elliptic equation;
local solvability;
rearrangement invariant spaces;
Boyd indices;
517.956.22;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider a higher order elliptic equation with nonsmooth coefficients with
respect to rearrangement invariant spaces on the domain \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \Omega\subset{}^{n} $\end{document}.
Separable subspaces of these spaces are
distinguished in which infinitely differentiable and compactly supported
functions are dense; Sobolev spaces generated by these subspaces are
determined. Under certain conditions on the coefficients of the equation and
the Boyd indices of the rearrangement invariant space, we prove the local solvability
of the equation in rearrangement invariant Sobolev spaces.
This result strengthens the previously known classical \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ L_{p} $\end{document}-analog.
Rearrangement invariant spaces include Lebesgue, Marcinkiewicz,
grand Lebesgue, Orlicz, Lorentz spaces and many others.
We present some results concerning these particular cases and
a result related to the weak-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ L_{p}^{w} $\end{document} space.
机构:
Russian Acad Sci, VA Trapeznikov Inst Control Sci, Moscow, Russia
Lomonosov Moscow State Univ, Moscow, RussiaRussian Acad Sci, VA Trapeznikov Inst Control Sci, Moscow, Russia