Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient

被引:0
|
作者
Xiaoming He
Tao Lin
Yanping Lin
机构
[1] Virginia Tech,Department of Mathematics
[2] Hong Kong Polytechnic University,Department of Applied Mathematics
[3] University of Alberta,Department of Mathematical and Statistics Science
来源
Journal of Systems Science and Complexity | 2010年 / 23卷
关键词
Adaptive mesh; discontinuous Galerkin; immersed interface; interface problems; penalty;
D O I
暂无
中图分类号
学科分类号
摘要
This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bilinear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mesh independent of the interface with local refinement at any locations needed even if the interface has a nontrivial geometry. Numerical examples are provided to show features of these methods.
引用
收藏
页码:467 / 483
页数:16
相关论文
共 50 条
  • [31] Discontinuous Galerkin methods for elliptic problems
    Arnold, DN
    Brezzi, F
    Cockburn, B
    Marini, D
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 89 - 101
  • [32] QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS. III - DISCONTINUOUS GALERKIN AND OTHER INTERIOR PENALTY METHODS
    Veeser, Andreas
    Zanotti, Pietro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) : 2871 - 2894
  • [33] Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations
    Dosopoulos, Stylianos
    Lee, Jin-Fa
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3512 - 3515
  • [34] DIVERGENCE-CONFORMING DISCONTINUOUS GALERKIN METHODS AND C0 INTERIOR PENALTY METHODS
    Kanschat, Guido
    Sharma, Natasha
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 1822 - 1842
  • [35] CONVERGENCE ANALYSIS OF AN ADAPTIVE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Hoppe, R. H. W.
    Kanschat, G.
    Warburton, T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 534 - 550
  • [36] Discontinuous Galerkin methods for elliptic partial differential equations with random coefficients
    Liu, Kun
    Riviere, Beatrice M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (11) : 2477 - 2490
  • [37] Interior penalty discontinuous Galerkin FEMs for a gradient beam and CNTs
    Eptaimeros, K. G.
    Koutsoumaris, C. Chr.
    Tsamasphyros, G. J.
    APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 118 - 139
  • [38] NEW INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR THE KELLER-SEGEL CHEMOTAXIS MODEL
    Epshteyn, Yekaterina
    Kurganov, Alexander
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 386 - 408
  • [39] INTERIOR PENALTY DISCONTINUOUS GALERKIN FEM FOR THE p(x)-LAPLACIAN
    Del Pezzo, Leandro M.
    Lombardi, Ariel L.
    Martinez, Sandra
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2497 - 2521
  • [40] Multigrid algorithms for -version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes
    Antonietti, P. F.
    Houston, P.
    Hu, X.
    Sarti, M.
    Verani, M.
    CALCOLO, 2017, 54 (04) : 1169 - 1198