Factoriality of complete intersections in ℙ5

被引:0
|
作者
Dimitra Kosta
机构
[1] The University of Edinburgh,School of Mathematics
关键词
Singular Point; STEKLOV Institute; Complete Intersection; Linear Condition; Homogeneous Form;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a complete intersection of two hypersurfaces Fn and Fk in ℙ5 of degree n and k, respectively, with n ≥ k, such that the singularities of X are nodal and Fk is smooth. We prove that if the threefold X has at most (n + k − 2)(n − 1) − 1 singular points, then it is factorial.
引用
收藏
页码:102 / 109
页数:7
相关论文
共 50 条
  • [41] The cotangent complex of complete intersections
    Emmanouil, I.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 321 (01):
  • [42] Gherardelli linkage and complete intersections
    Franco, D
    Kleiman, SL
    Lascu, AT
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 48 : 271 - 279
  • [43] Clifford quadratic complete intersections
    Hu, Haigang
    Mori, Izuru
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (02)
  • [44] A NOTE ON COMPLETE-INTERSECTIONS
    BHATWADEKAR, SM
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 270 (01) : 175 - 181
  • [45] ON QUASISMOOTH WEIGHTED COMPLETE INTERSECTIONS
    Chen, Jheng-Jie
    Chen, Jungkai A.
    Chen, Meng
    JOURNAL OF ALGEBRAIC GEOMETRY, 2011, 20 (02) : 239 - 262
  • [46] COMPLETE INTERSECTIONS AND GORENSTEIN IDEALS
    GREEN, EL
    JOURNAL OF ALGEBRA, 1978, 52 (01) : 264 - 273
  • [47] Complete intersections on general hypersurfaces
    Carlini, Enrico
    Chiantini, Luca
    Geramita, Anthony V.
    MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 : 121 - 136
  • [48] Semiregularity and obstructions of complete intersections
    Iacono, Donatella
    Manetti, Marco
    ADVANCES IN MATHEMATICS, 2013, 235 : 92 - 125
  • [49] On the homotopy type of complete intersections
    Astey, L
    Gitler, S
    Micha, E
    Pastor, G
    TOPOLOGY, 2005, 44 (01) : 249 - 260
  • [50] Conjecture Ο for Projective Complete Intersections
    Ke, Hua-Zhong
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, : 3947 - 3974