Affine restriction for radial surfaces

被引:0
|
作者
Bassam Shayya
机构
[1] American University of Beirut,Department of Mathematics
来源
Mathematische Zeitschrift | 2009年 / 262卷
关键词
Primary 42B10; Secondary 52A15;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose dμ is affine surface measure on a convex radial surface Γ(x) = (x, γ(|x|)), a ≤ |x| < b, in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} . Under appropriate smoothness and growth conditions on γ, we prove \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(L^{4/3}(\mathbb{R}^3), L^{4/3}(d\mu))}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(L^{4/3}(\mathbb{R}^3), L^2(d\mu))}$$\end{document} Fourier restriction estimates for Γ.
引用
收藏
页码:41 / 55
页数:14
相关论文
共 50 条
  • [31] Affine Isometric Embedding for Surfaces
    Thomas Ivey
    Geometriae Dedicata, 1999, 75 : 235 - 243
  • [32] Automorphisms of affine Veronese surfaces
    Aitzhanova, Bakhyt
    Umirbaev, Ualbai
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2023, 33 (02) : 351 - 367
  • [33] Symmetric affine surfaces with torsion
    D'Ascanio, D.
    Gilkey, P. B.
    Pisani, P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 147
  • [34] AFFINE DIFFERENTIAL GEOMETRY OF SURFACES
    SVEC, A
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1990, 40 (01) : 125 - 154
  • [35] Euclidean Complete Affine Surfaces with Constant Affine Mean Curvature
    An-Min Li
    Fang Jia
    Annals of Global Analysis and Geometry, 2003, 23 : 283 - 304
  • [36] Affine Killing complete and geodesically complete homogeneous affine surfaces
    Gilkey, P. B.
    Park, J. H.
    Valle-Regueiro, X.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) : 179 - 193
  • [37] Affine surfaces fibered by affine lines over the projective line
    Wright, D
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (04) : 589 - 605
  • [38] CONVEX AFFINE SURFACES WITH CONSTANT AFFINE MEAN-CURVATURE
    MARTINEZ, A
    MILAN, F
    LECTURE NOTES IN MATHEMATICS, 1991, 1481 : 138 - 144
  • [39] Affine lines on affine surfaces and the makar-limanov invariant
    Gurjar, R. V.
    Masuda, K.
    Miyanishi, M.
    Russell, P.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (01): : 109 - 139
  • [40] Euclidean complete affine surfaces with constant affine mean curvature
    Li, AM
    Jia, F
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (03) : 283 - 304