Some remarks on the odd hadwiger’s conjecture

被引:0
|
作者
Ken-ichi Kawarabayashi
Zi-Xia Song
机构
[1] Tohoku University,Graduate School of Information Sciences (GSIS)
[2] The Ohio State University,Department of Mathematics
[3] University of Central Florida,Department of Mathematics
来源
Combinatorica | 2007年 / 27卷
关键词
05C15; 05C83;
D O I
暂无
中图分类号
学科分类号
摘要
We say that H has an odd complete minor of order at least l if there are l vertex disjoint trees in H such that every two of them are joined by an edge, and in addition, all the vertices of trees are two-colored in such a way that the edges within the trees are bichromatic, but the edges between trees are monochromatic.
引用
收藏
相关论文
共 50 条
  • [21] Hadwiger’s conjecture for uncountable graphs
    Péter Komjáth
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2017, 87 : 337 - 341
  • [22] Hadwiger's conjecture for uncountable graphs
    Komjath, Peter
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2017, 87 (02): : 337 - 341
  • [23] A special case of Hadwiger's conjecture
    Blasiak, Jonah
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) : 1056 - 1073
  • [24] Hadwiger's conjecture for line graphs
    Reed, B
    Seymour, P
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (06) : 873 - 876
  • [25] On a recolouring version of Hadwiger's conjecture
    Bonamy, Marthe
    Heinrich, Marc
    Legrand-Duchesne, Clement
    Narboni, Jonathan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 164 : 364 - 370
  • [26] Fractional colouring and Hadwiger's conjecture
    Reed, B
    Seymour, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) : 147 - 152
  • [27] On the Hadwiger's conjecture for graph products
    Chandran, L. Sunil
    Sivadasan, Naveen
    DISCRETE MATHEMATICS, 2007, 307 (02) : 266 - 273
  • [28] On a new reformulation of Hadwiger's conjecture
    Naserasr, Reza
    Nigussie, Yared
    DISCRETE MATHEMATICS, 2006, 306 (23) : 3136 - 3139
  • [29] The edge version of Hadwiger's conjecture
    Ding, Guoli
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1118 - 1122
  • [30] Connected matchings and Hadwiger's conjecture
    Füredi, Z
    Gyárfás, A
    Simonyi, G
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 435 - 438