Resonance synchronisation between memristive oscillators and network without variable coupling

被引:0
|
作者
Yin Zhang
Ping Zhou
Zhao Yao
Jun Ma
机构
[1] Lanzhou University of Technology,Department of Physics
[2] Chongqing University of Posts and Telecommunications,School of Science
来源
Pramana | 2021年 / 95卷
关键词
Memristive function; noise; synchronisation factor; bifurcation; network; memristor; 05.45.−a;
D O I
暂无
中图分类号
学科分类号
摘要
Continuous energy pumping and exchange along the coupling channel can balance the energy release between nonlinear oscillators for reaching complete synchronisation. When external stimulus is applied, energy is injected and encoded for regulating the dynamics of nonlinear oscillators and circuits. In this paper, the synchronisation between memristive Rössler oscillators is investigated by reactivating one memristive variable, and external stimuli are changed to detect the occurrence of synchronisation without direct variable coupling. In the presence of periodical stimulus, stochastic switch and feedback on the memristive variable can induce synchronisation between two memristive oscillators and chain network composed of memristive oscillators. In the presence of noise, stochastic feedback and disturbance on the memristive variable can keep synchronisation stable between two oscillators, and complete synchronisation is realised. In addition, the synchronisation factor and spatial patterns are calculated to confirm the occurrence of synchronisation between more chaotic oscillators when memristive function is activated even when no coupling channels are switched on.
引用
收藏
相关论文
共 50 条
  • [41] Stochastic resonance in delayed two-coupled oscillators without common perturbations
    Li, QS
    Zhu, R
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [42] Stochastic resonance in delayed two-coupled oscillators without common perturbations
    Li, Q.S.
    Zhu, R.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 I): : 1 - 051116
  • [43] Resonance Assisted Synchronization of Coupled Oscillators: Frequency Locking without Phase Locking
    Thevenin, J.
    Romanelli, M.
    Vallet, M.
    Brunel, M.
    Erneux, T.
    PHYSICAL REVIEW LETTERS, 2011, 107 (10)
  • [44] A VARIABLE-COUPLING CAVITY FOR ELECTRON SPIN RESONANCE MEASUREMENTS
    FAULKNER, EA
    HOLMAN, A
    JOURNAL OF SCIENTIFIC INSTRUMENTS, 1963, 40 (04): : 205 - &
  • [45] Synchronous Trajectory Tracking for Mobile Robot Network without velocity measurements between coupling robots
    Liu, Zhe
    Chen, Weidong
    Lu, Junguo
    Wang, Hesheng
    2016 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (IEEE RCAR), 2016, : 626 - 631
  • [46] Control of amplitude death by coupling range in a network of fractional-order oscillators
    Xiao, Rui
    Sun, Zhongkui
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (31):
  • [47] CONTINUOUS COUPLING OF CHAOTIC AND PERIODIC STATES OF CHEMICAL OSCILLATORS WITH AND WITHOUT TIME-DELAY
    ZEYER, KP
    HOLZ, R
    SCHNEIDER, FW
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1993, 97 (09): : 1112 - 1119
  • [48] A method for revealing coupling between oscillators with analytical assessment of statistical significance
    D. A. Smirnov
    E. V. Sidak
    B. P. Bezruchko
    Technical Physics Letters, 2013, 39 : 601 - 605
  • [49] Intercellular coupling between peripheral circadian oscillators by TGF-β signaling
    Finger, Anna-Marie
    Jaeschke, Sebastian
    del Olmo, Marta
    Hurwitz, Robert
    Granada, Adrian E.
    Herzel, Hanspeter
    Kramer, Achim
    SCIENCE ADVANCES, 2021, 7 (30)
  • [50] PHOTOREFRACTIVE MODE-COUPLING BETWEEN 2 UNIDIRECTIONAL RING OSCILLATORS
    DAI, LK
    GOU, YS
    YEH, P
    GU, C
    APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1991, 53 (03): : 153 - 159