On Distality of a Transformation Semigroup with One Point Compactification of a Discrete Space as Phase Space

被引:0
|
作者
Fatemah Ayatollah Zadeh Shirazi
Mohammad Ali Mahmoodi
Morvarid Raeisi
机构
[1] University of Tehran,Faculty of Mathematics, Statistics and Computer Science, College of Science
关键词
Alexandroff compactification; Distal; Finally distal; Fort space; One point compactification;
D O I
暂无
中图分类号
学科分类号
摘要
For infinite discrete topological space Y,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y,$$\end{document} suppose A(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(Y)$$\end{document} is one point compactification of Y,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y,$$\end{document} in the following text we prove that the transformation semigroup (A(Y),S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A(Y),S)$$\end{document} is distal if and only if the enveloping semigroup E(A(Y),S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(A(Y),S)$$\end{document} is a group of homeomorphisms on A(Y),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(Y),$$\end{document} or equivalently for all p∈E(A(Y),S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in E(A(Y),S)$$\end{document}, p:A(Y)→A(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p:A(Y) \to A(Y)$$\end{document} is pointwise periodic. Also, the transformation group (A(Y),S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A(Y),S)$$\end{document} is distal (resp. equicontinuous, pointwise minimal) if and only if for all x∈A(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in A(Y)$$\end{document}, xS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xS$$\end{document} is a finite subset of A(Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(Y)$$\end{document}. The text is motivated with tables, counterexamples and studying finally distality (and co-decomposability to distal transformation semigroups) in the abelian transformation semigroup (A(Y),S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A(Y),S)$$\end{document}.
引用
收藏
页码:209 / 217
页数:8
相关论文
共 50 条
  • [21] On removing one point from a compact space
    Kozma, G
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (04): : 1115 - 1126
  • [22] Strong convergence theorems for fixed point problems of a nonexpansive semigroup in a Banach space
    Xin Wang
    Changsong Hu
    Jinlin Guan
    Fixed Point Theory and Applications, 2013
  • [23] Wave packets in discrete quantum phase space
    Bang, Jang Young
    Berger, Micheal S.
    PHYSICAL REVIEW A, 2009, 80 (02):
  • [24] Symmetry induced compression of discrete phase space
    Krawczyk, Malgorzata J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (11) : 2181 - 2191
  • [25] Parametrized discrete phase-space functions
    Opatrny, T
    Welsch, DG
    Buzek, V
    PHYSICAL REVIEW A, 1996, 53 (06): : 3822 - 3835
  • [26] Discrete phase space based on finite fields
    Gibbons, KS
    Hoffman, MJ
    Wootters, WK
    PHYSICAL REVIEW A, 2004, 70 (06): : 062101 - 1
  • [27] Operator Space and Discrete Phase Space Methods in Quantum Transport and Quantum Computing
    Buot, Felix A.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (08) : 1864 - 1926
  • [28] Transformation of unorganised point pairs of a plane to a point on a four dimensional space
    Schaake, G
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1931, 34 (6/10): : 1116 - 1123
  • [29] General iterative methods for a one-parameter nonexpansive semigroup in Hilbert space
    Li, Suhlong
    Li, Lihua
    Su, Yongfu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) : 3065 - 3071
  • [30] Phase space transformation on ultra cold neutrons
    Boehm, M.
    Henggeler, W.
    Allenspach, P.
    Furrer, A.
    JOURNAL OF NEUTRON RESEARCH, 2005, 13 (04) : 241 - 250