On the solvability of degenerate stochastic partial differential equations in sobolev spaces

被引:0
|
作者
Gerencsér M. [1 ]
Gyöngy I. [1 ]
Krylov N. [2 ]
机构
[1] School of Mathematics and Maxwell Institute, The University of Edinburgh, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh
[2] University of Minnesota, 127 Vincent Hall, Minneapolis, 55455, MN
基金
美国国家科学基金会;
关键词
Cauchy problem; Degenerate stochastic parabolic PDEs; First order symmetric hyperbolic system;
D O I
10.1007/s40072-014-0042-6
中图分类号
学科分类号
摘要
Systems of parabolic, possibly degenerate parabolic SPDEs are considered. Existence and uniqueness are established in Sobolev spaces. Similar results are obtained for a class of equations generalizing the deterministic first order symmetric hyperbolic systems. © Springer Science+Business Media New York 2014.
引用
收藏
页码:52 / 83
页数:31
相关论文
共 50 条
  • [21] STOCHASTIC VARIATIONAL INEQUALITIES AND REGULARITY FOR DEGENERATE STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Gess, Benjamin
    Roeckner, Michael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (05) : 3017 - 3045
  • [22] On Solvability in the Class of Distributions of Degenerate Integro-Differential Equations in Banach Spaces
    Falaleev, M., V
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2020, 34 : 77 - 92
  • [23] DEGENERATE PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS: QUASILINEAR CASE
    Debussche, Arnaud
    Hofmanova, Martina
    Vovelle, Julien
    ANNALS OF PROBABILITY, 2016, 44 (03): : 1916 - 1955
  • [24] Supremum estimates for degenerate, quasilinear stochastic partial differential equations
    Dareiotis, Konstantinos
    Gess, Benjamin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (03): : 1765 - 1796
  • [25] SOLVABILITY OF BOUNDARY VALUE PROBLEMS FOR DEGENERATE EQUATIONS OF SOBOLEV TYPE
    Pinigina, N. R.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2012, (14): : 120 - 129
  • [26] NORMAL SOLVABILITY IN LINEAR PARTIAL-DIFFERENTIAL OPERATORS IN LOCAL WEIGHTED SOBOLEV SPACES
    SAGRALOFF, B
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1979, 310 : 131 - 150
  • [27] DEGENERATE SOBOLEV SPACES AND REGULARITY OF SUBELLIPTIC EQUATIONS
    Sawyer, Eric T.
    Wheeden, Richard L.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (04) : 1869 - 1906
  • [28] Weighted Sobolev Spaces and Degenerate Elliptic Equations
    Cavalheiro, Albo Carlos
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 117 - 132
  • [29] Linear stochastic degenerate Sobolev equations and applications
    Liaskos, Konstantinos B.
    Pantelous, Athanasios A.
    Stratis, Ioannis G.
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (12) : 2538 - 2553
  • [30] Well-defined solvability of some differential-difference equations in Sobolev spaces
    Vlasov, VV
    Sakbaev, VZ
    MATHEMATICAL NOTES, 2000, 68 (5-6) : 794 - 797