Dynamic equations for a periodic set of edge dislocations

被引:0
|
作者
V. L. Berdichevsky
机构
[1] Wayne State University,Mechanical Engineering
来源
关键词
Dislocation dynamics; Dislocation lattice; Dislocation lattice stability; Approximation of dislocation interaction energy;
D O I
暂无
中图分类号
学科分类号
摘要
A closed finite-dimensional system of dynamical equations for an unbounded periodic set of edge dislocations obtained previously from homogenization reasoning (Berdichevsky in J Mech Phys Solids 106:95–132, 2017) is rederived in this paper using some elementary means.
引用
收藏
页码:425 / 436
页数:11
相关论文
共 50 条
  • [21] Dynamic properties of edge dislocations decorated by interstitial loops in α-iron and copper
    Osetsky, YN
    Bacon, DJ
    Rong, Z
    Singh, BN
    PHILOSOPHICAL MAGAZINE LETTERS, 2004, 84 (11) : 745 - 754
  • [22] Dynamic blocking of the influence of surface point defects on the glide of edge dislocations
    V. V. Malashenko
    Physics of the Solid State, 2009, 51 : 744 - 746
  • [23] Dynamic interactions of helium-vacancy clusters with edge dislocations in α-Fe
    Yang, L.
    Zu, X. T.
    Gao, F.
    Peng, S. M.
    Heinisch, H. L.
    Long, X. G.
    Kurtz, R. J.
    PHYSICA B-CONDENSED MATTER, 2010, 405 (07) : 1754 - 1758
  • [24] Modeling of Interaction of Edge Dislocations and Microvoids Using Molecular Dynamic Approach
    Gerasimov, Roman M.
    Volegov, Pavel S.
    28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES, 2020, 2216
  • [25] Dynamic slowdown of edge dislocations by point defects in a hydrostatically compressed crystal
    V. V. Malashenko
    Technical Physics, 2006, 51 : 806 - 808
  • [26] Dynamic slowdown of edge dislocations by point defects in a hydrostatically compressed crystal
    Malashenko, VV
    TECHNICAL PHYSICS, 2006, 51 (06) : 806 - 808
  • [27] Dynamic evolution of circular edge dislocations in free space and atmospheric turbulence
    Li, Jinhong
    Gao, Penghui
    Cheng, Ke
    Duan, Meiling
    OPTICS EXPRESS, 2017, 25 (03): : 2895 - 2908
  • [29] On the correspondence between periodic solutions of differential and dynamic equations on periodic time scales
    Tsan, Viktoriia
    Stanzhytskyi, Oleksandr
    Martynyuk, Olha
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (05) : 899 - 908
  • [30] PERIODIC AND NONNEGATIVE PERIODIC SOLUTIONS OF NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON A TIME SCALE
    Gouasmia, Manel
    Ardjouni, Abdelouaheb
    Djoudi, Ahcene
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (02): : 162 - 177