Further results on non-Newtonian power-law flows past a two-dimensional flat plate with finite length

被引:0
|
作者
Asterios Pantokratoras
机构
[1] Democritus University of Thrace,School of Engineering
关键词
Drag; Flat plate; Non-Newtonian; Wake;
D O I
暂无
中图分类号
学科分类号
摘要
The flow of a non-Newtonian, power-law fluid directed either tangentially or normally to a flat plate of finite length and infinite width (two-dimensional flow) is considered. The problem is investigated numerically using the code ANSYS FLUENT. This problem has been investigated in the past but only for shear-thinning fluids (n < 1). We extend the investigation for the case of shear-thinning, Newtonian and shear-thickening fluids, covering a wide range of Reynolds numbers (from very low to very high). For low Reynolds numbers and low power-law index (n < 0.6) the drag coefficient obeys the relationship cD = A/Re, both for tangential and normal flow. Equations for the quantity A have been derived as functions of the power-law index. For normal flow, the drag coefficient tends to become independent of the power-law index, both for shear-thinning and shear-thickening fluids at high Reynolds numbers.
引用
收藏
页码:1995 / 2003
页数:8
相关论文
共 50 条
  • [31] FREE CONVECTION AT A VERTICAL PLATE WITH UNIFORM FLUX CONDITION IN NON-NEWTONIAN POWER-LAW FLUIDS
    CHEN, TYW
    WOLLERSH.DE
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1973, 95 (01): : 123 - 124
  • [32] Similarity solutions for non-Newtonian power-law fluid flow
    Wei, D. M.
    Al-Ashhab, S.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (09) : 1155 - 1166
  • [33] Evolution of thin liquid film for Newtonian and power-law non-Newtonian fluids
    Nasehi, R.
    Shirani, E.
    SCIENTIA IRANICA, 2018, 25 (01) : 266 - 279
  • [34] Similarity solutions for non-Newtonian power-law fluid flow
    D.M.WEI
    S.AL-ASHHAB
    AppliedMathematicsandMechanics(EnglishEdition), 2014, 35 (09) : 1155 - 1166
  • [35] STABILITY OF A PLANE FLOW OF A POWER-LAW NON-NEWTONIAN FLUID
    MAKAROV, AM
    MARTINSO.LK
    PAVLOV, KB
    INTERNATIONAL CHEMICAL ENGINEERING, 1969, 9 (04): : 695 - &
  • [36] Dimensionless Analysis of Non-Newtonian Power-Law Fluid Hammer
    Santos, Tainan G. M.
    Oliveira, Gabriel M.
    Negrao, Cezar O. R.
    JOURNAL OF HYDRAULIC ENGINEERING, 2023, 149 (09)
  • [37] Similarity solutions for non-Newtonian power-law fluid flow
    D. M. Wei
    S. Al-Ashhab
    Applied Mathematics and Mechanics, 2014, 35 : 1155 - 1166
  • [38] Lattice Boltzmann method for non-Newtonian (power-law) fluids
    Gabbanelli, S
    Drazer, G
    Koplik, J
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [39] On quasi-static non-Newtonian fluids with power-law
    Fuchs, M
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1996, 19 (15) : 1225 - 1232
  • [40] FLOW OF POWER-LAW NON-NEWTONIAN FLUIDS IN CONCENTRIC ANNULI
    HANKS, RW
    LARSEN, KM
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1979, 18 (01): : 33 - 35