Classifying snapshots of the doped Hubbard model with machine learning

被引:0
|
作者
Annabelle Bohrdt
Christie S. Chiu
Geoffrey Ji
Muqing Xu
Daniel Greif
Markus Greiner
Eugene Demler
Fabian Grusdt
Michael Knap
机构
[1] Technical University of Munich,Department of Physics and Institute for Advanced Study
[2] Harvard University,Department of Physics
[3] Munich Center for Quantum Science and Technology,undefined
来源
Nature Physics | 2019年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyse and classify such snapshots of ultracold atoms. Specifically, we compare the data from an experimental realization of the two-dimensional Fermi–Hubbard model to two theoretical approaches: a doped quantum spin liquid state of resonating valence bond type1,2, and the geometric string theory3,4, describing a state with hidden spin order. This technique considers all available information without a potential bias towards one particular theory by the choice of an observable and can therefore select the theory that is more predictive in general. Up to intermediate doping values, our algorithm tends to classify experimental snapshots as geometric-string-like, as compared to the doped spin liquid. Our results demonstrate the potential for machine learning in processing the wealth of data obtained through quantum gas microscopy for new physical insights.
引用
收藏
页码:921 / 924
页数:3
相关论文
共 50 条
  • [41] A machine learning model for classifying G-protein-coupled receptors as agonists or antagonists
    Oh, Jooseong
    Ceong, Hyi-Thaek
    Na, Dokyun
    Park, Chungoo
    BMC BIOINFORMATICS, 2022, 23 (SUPPL 9)
  • [42] A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation
    Ma, Simeng
    Xie, Xinhui
    Deng, Zipeng
    Wang, Wei
    Xiang, Dan
    Yao, Lihua
    Kang, Lijun
    Xu, Shuxian
    Wang, Huiling
    Wang, Gaohua
    Yang, Jun
    Liu, Zhongchun
    BIOLOGICAL PSYCHIATRY, 2024, 96 (01) : 44 - 56
  • [43] Origin and fate of the pseudogap in the doped Hubbard model
    Simkovic IV, Fedor
    Rossi, Riccardo
    Georges, Antoine
    Ferrero, Michel
    SCIENCE, 2024, 385 (6715)
  • [44] The doped two-chain Hubbard model
    Noack, R. M.
    White, S. R.
    Scalapino, D. J.
    Europhysics Letters, 30 (03):
  • [45] Slave boson study of the doped Hubbard model
    Camjayi, A.
    Rozenberg, M. J.
    Chitra, R.
    PHYSICAL REVIEW B, 2007, 76 (19)
  • [46] Anderson localization effects on the doped Hubbard model
    Giovanni, Nathan
    Civelli, Marcello
    Aguiar, Maria C. O.
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [47] Machine learning Hubbard parameters with equivariant neural networks
    Uhrin, Martin
    Zadoks, Austin
    Binci, Luca
    Marzari, Nicola
    Timrov, Iurii
    NPJ COMPUTATIONAL MATERIALS, 2025, 11 (01)
  • [48] Classifying Restatements: An Application of Machine Learning and Textual Analytics
    Hayes, Louise
    Boritz, J. Efrim
    JOURNAL OF INFORMATION SYSTEMS, 2021, 35 (03) : 107 - 131
  • [49] A Machine Learning Approach for Classifying Road Accident Hotspots
    Amorim, Brunna de Sousa Pereira
    Firmino, Anderson Almeida
    Baptista, Claudio de Souza
    Braz, Geraldo
    de Paiva, Anselmo Cardoso
    de Almeida, Francisco Edeverton
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (06)
  • [50] Classifying features of freeway crashes using machine learning
    Najafi, Zahra
    Sadeghi, Rasool
    Arghami, Shirazeh
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2022, 27 (06) : 1678 - 1686