Leading indicators and maritime safety: predicting future risk with a machine learning approach

被引:0
|
作者
Lutz Kretschmann
机构
[1] Fraunhofer Center for Maritime Logistics and Services CML,
关键词
Maritime safety; Accident prevention; Safety management; Risk prediction; Leading indicators; Machine learning;
D O I
10.1186/s41072-020-00071-1
中图分类号
学科分类号
摘要
The shipping industry has been quite successful in reducing the number of major accidents in the past. In order to continue this development in the future, innovative leading risk indicators can make a significant contribution. If designed properly, they enable a forward-looking identification and assessment of existing risks for ship and crew, which in turn allows the implementation of mitigating measures before adverse events occur. Right now, the opportunity for developing such leading risk indicators is positively influenced by the ongoing digital transformation in the maritime industry. With an increasing amount of data from ship operation becoming available, these can be exploited in innovative risk management solutions. By combining the idea of leading risk indicators with data and algorithm-based risk management methods, this paper firstly establishes a development framework for designing maritime risk models based on safety-related data collected onboard. Secondly, the development framework is applied in a proof of concept where an innovative machine learning-based approach is used to calculate a leading maritime risk indicator. Overall, findings confirm that a data- and algorithm-based approach can be used to determine a leading risk indicator per ship, even though the achieved model performance is not yet regarded as satisfactory and further research is planned.
引用
收藏
相关论文
共 50 条
  • [41] A Machine Learning Approach for Predicting Nicotine Dependence
    Kharabsheh, Mohammad
    Meqdadi, Omar
    Alabed, Mohammad
    Veeranki, Sreenivas
    Abbadi, Ahmad
    Alzyoud, Sukaina
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (03) : 179 - 184
  • [42] Machine Learning Approach for Predicting Bumps on Road
    Ghadge, Manjusha
    Pandey, Dheeraj
    Kalbande, Dhananjay
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2015, : 481 - 485
  • [43] Predicting chattering alarms: A machine Learning approach
    Tamascelli, Nicola
    Paltrinieri, Nicola
    Cozzani, Valerio
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 143
  • [44] A Machine Learning Approach to Predicting MPN Patients
    Greenfield, Graeme
    Blayney, Jaine
    McMullin, Mary Frances
    Mills, Ken
    BRITISH JOURNAL OF HAEMATOLOGY, 2021, 193 : 61 - 61
  • [45] A Machine Learning Approach to Predicting Diabetes Complications
    Jian, Yazan
    Pasquier, Michel
    Sagahyroon, Assim
    Aloul, Fadi
    HEALTHCARE, 2021, 9 (12)
  • [46] PRAM: A Novel Approach for Predicting Riskless State of Commodity Future Arbitrages With Machine Learning Techniques
    He, Feng
    Wen, Yan-Dong
    IEEE ACCESS, 2019, 7 : 159519 - 159526
  • [47] Predicting the Risk of Severity and Readmission in Patients with Heart Failure in Indonesia:A Machine Learning Approach
    Indriany, Finna E.
    Siregar, Kemal N.
    Purwowiyoto, Budhi Setianto
    Siswanto, Bambang Budi
    Sutedja, Indrajani
    Wijaya, Hendy R.
    HEALTHCARE INFORMATICS RESEARCH, 2024, 30 (03) : 253 - 265
  • [48] Predicting the risk of acute care readmissions among rehabilitation inpatients: A machine learning approach
    Xue, Yajiong
    Liang, Huigang
    Norbury, John
    Gillis, Rita
    Killingworth, Brenda
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 86 : 143 - 148
  • [49] Machine Learning Classifiers: A Novel Approach to Predicting Bleeding Risk in Hospitalized Cirrhotic Patients
    James, Spencer L.
    Henderson, Emily E.
    Shatzel, Joseph J.
    Dickson, Rolland
    GASTROENTEROLOGY, 2015, 148 (04) : S1079 - S1079
  • [50] PREDICTING THE RISK FACTORS OF HYPERTENSION AMONG INDIAN OLDER POPULATION: A MACHINE LEARNING APPROACH
    Das, Ayushi
    INNOVATION IN AGING, 2023, 7 : 450 - 450