Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part I

被引:0
|
作者
Erlend Grong
Anton Thalmaier
机构
[1] University of Luxembourg,Mathematics Research Unit, FSTC
来源
Mathematische Zeitschrift | 2016年 / 282卷
关键词
Curvature-dimension inequality; Sub-Riemannian geometry; Hypoelliptic operator; Spectral gap; Riemannian foliations; 58J35; 53C17; 58J99;
D O I
暂无
中图分类号
学科分类号
摘要
We give a generalized curvature-dimension inequality connecting the geometry of sub-Riemannian manifolds with the properties of its sub-Laplacian. This inequality is valid on a large class of sub-Riemannian manifolds obtained from Riemannian foliations. We give a geometric interpretation of the invariants involved in the inequality. Using this inequality, we obtain a lower bound for the eigenvalues of the sub-Laplacian. This inequality also lays the foundation for proving several powerful results in Part II.
引用
收藏
页码:99 / 130
页数:31
相关论文
共 50 条
  • [41] Geodesic Transformations of Distributions of Sub-Riemannian Manifolds
    Galaev S.V.
    Journal of Mathematical Sciences, 2023, 277 (5) : 722 - 726
  • [42] Intrinsic complements of equiregular sub-Riemannian manifolds
    Robert K. Hladky
    Geometriae Dedicata, 2014, 173 : 89 - 103
  • [43] Heat content asymptotics for sub-Riemannian manifolds
    Rizzi, Luca
    Rossi, Tommaso
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 148 : 267 - 307
  • [44] RICCI CURVATURE TYPE LOWER BOUNDS FOR SUB-RIEMANNIAN STRUCTURES ON SASAKIAN MANIFOLDS
    Lee, Paul W. Y.
    Li, Chengbo
    Zelenko, Igor
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (01) : 303 - 321
  • [45] Constant curvature models in sub-Riemannian geometry
    Alekseevsky, D.
    Medvedev, A.
    Slovak, J.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 241 - 256
  • [46] SUB-RIEMANNIAN BALLS IN CR SASAKIAN MANIFOLDS
    Baudoin, Fabrice
    Bonnefont, Michel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (11) : 3919 - 3924
  • [47] A CANONICAL CONNECTION ON SUB-RIEMANNIAN CONTACT MANIFOLDS
    Eastwood, Michael
    Neusser, Katharina
    ARCHIVUM MATHEMATICUM, 2016, 52 (05): : 277 - 289
  • [48] CURVATURE AND THE EQUIVALENCE PROBLEM IN SUB-RIEMANNIAN GEOMETRY
    Grong, Erlend
    ARCHIVUM MATHEMATICUM, 2022, 58 (05): : 295 - 327
  • [49] On isotropic sub-Riemannian contact manifolds.
    Mansouri, AR
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 39 - 42
  • [50] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Sylvain Arguillère
    The Journal of Geometric Analysis, 2020, 30 : 2897 - 2938