Universal Enveloping Algebras of Lie–Rinehart Algebras as a Left Adjoint Functor

被引:0
|
作者
Paolo Saracco
机构
[1] Université Libre de Bruxelles,Département de Mathématique
[2] Boulevard du Triomphe,undefined
来源
关键词
Lie–Rinehart algebras; anchored Lie algebras; universal enveloping algebras; universal properties; adjoint functors; Connes-Moscovici bialgebroid; Atiyah algebra; Primary 16B50; 16S10; 16S30; 16W25; 18A40; Secondary 17A30; 17B66;
D O I
暂无
中图分类号
学科分类号
摘要
We prove how the universal enveloping algebra constructions for Lie–Rinehart algebras and anchored Lie algebras are naturally left adjoint functors. This provides a conceptual motivation for the universal properties these constructions satisfy. As a supplement, the categorical approach offers new insights into the definitions of Lie–Rinehart algebra morphisms, of modules over Lie–Rinehart algebras and of the infinitesimal gauge algebra of a module.
引用
收藏
相关论文
共 50 条
  • [41] ON LIE-RINEHART-JACOBI ALGEBRAS
    Okassa, Eugene
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (06) : 749 - 772
  • [42] Hom-Lie-Rinehart algebras
    Mandal, Ashis
    Mishra, Satyendra Kumar
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (09) : 3722 - 3744
  • [43] Sympathetic Lie algebras and adjoint cohomology for Lie algebras
    Burde, Dietrich
    Wagemann, Friedrich
    JOURNAL OF ALGEBRA, 2023, 629 : 381 - 398
  • [44] A Natural Extension of the Universal Enveloping Algebra Functor to Crossed Modules of Leibniz Algebras
    Rafael Fernández-Casado
    Xabier García-Martínez
    Manuel Ladra
    Applied Categorical Structures, 2017, 25 : 1059 - 1076
  • [45] A Natural Extension of the Universal Enveloping Algebra Functor to Crossed Modules of Leibniz Algebras
    Fernandez-Casado, Rafael
    Garcia-Martinez, Xabier
    Ladra, Manuel
    APPLIED CATEGORICAL STRUCTURES, 2017, 25 (06) : 1059 - 1076
  • [46] Universal enveloping algebras of Poisson Hopf algebras
    Lu, Jiafeng
    Wang, Xingting
    Zhuang, Guangbin
    JOURNAL OF ALGEBRA, 2015, 426 : 92 - 136
  • [47] Lie stacks and their enveloping algebras
    LeBruyn, L
    ADVANCES IN MATHEMATICS, 1997, 130 (01) : 103 - 135
  • [48] Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras
    Huebschmann, J
    ANNALES DE L INSTITUT FOURIER, 1998, 48 (02) : 425 - +
  • [49] The center of the universal enveloping algebras of small-dimensional nilpotent Lie algebras in prime characteristic
    de Jesus, Vanderlei Lopes
    Schneider, Csaba
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (02): : 243 - 266
  • [50] The center of the universal enveloping algebras of small-dimensional nilpotent Lie algebras in prime characteristic
    Vanderlei Lopes de Jesus
    Csaba Schneider
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 243 - 266