We prove how the universal enveloping algebra constructions for Lie–Rinehart algebras and anchored Lie algebras are naturally left adjoint functors. This provides a conceptual motivation for the universal properties these constructions satisfy. As a supplement, the categorical approach offers new insights into the definitions of Lie–Rinehart algebra morphisms, of modules over Lie–Rinehart algebras and of the infinitesimal gauge algebra of a module.
机构:
Univ Tours, Inst Denis Poisson, Unite Mixte Rech 7013, CNRS, F-37200 Tours, France
Univ Orleans, Parc Grandmont, F-37200 Tours, FranceUniv Tours, Inst Denis Poisson, Unite Mixte Rech 7013, CNRS, F-37200 Tours, France
Bekaert, Xavier
Kowalzig, Niels
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientif 1, I-00133 Rome, ItalyUniv Tours, Inst Denis Poisson, Unite Mixte Rech 7013, CNRS, F-37200 Tours, France
机构:
Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, MG, Brazil
Rodriguez, Jose L. Vilca
Schneider, Csaba
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, MG, Brazil
Schneider, Csaba
Usefi, Hamid
论文数: 0引用数: 0
h-index: 0
机构:
Mem Univ Newfoundland, Dept Math & Stat, St John, NL A1C 5S7, CanadaUniv Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, MG, Brazil