Dynamic multi-scale loss optimization for object detection

被引:0
|
作者
Yihao Luo
Xiang Cao
Juntao Zhang
Peng Cheng
Tianjiang Wang
Qi Feng
机构
[1] Huazhong University of Science and Technology,School of Computer Science and Technology
[2] Coolanyp Limited Liability Company,undefined
来源
关键词
Object detection; Multi-scale imbalance; Reinforcement learning; Multi-task;
D O I
暂无
中图分类号
学科分类号
摘要
With the continuous improvement of deep object detectors via advanced model architectures, imbalance problems in the training process have received more attention. It is a common paradigm in object detection frameworks to perform multi-scale detection. However, each scale is treated equally during training. In this paper, we carefully study the objective imbalance of multi-scale detector training. We argue that the loss in each scale level is neither equally important nor independent. Different from the existing solutions of setting multi-task weights, we dynamically optimize the loss weight of each scale level in the training process. Specifically, we propose an Adaptive Variance Weighting (AVW) to balance multi-scale loss according to the statistical variance. Then we develop a novel Reinforcement Learning Optimization (RLO) to decide the weighting scheme probabilistically during training. It makes better utilization of multi-scale training loss without extra computational complexity and learnable parameters for backpropagation. Without bells and whistles, the proposed method improves ATSS by 0.9 AP on the MS COCO benchmark. And it achieves 82.1 mAP on Pascal VOC 2007 test set, which outperforms other reinforcement-learning-based methods.
引用
收藏
页码:2349 / 2367
页数:18
相关论文
共 50 条
  • [11] Multi-scale energy optimization for object proposal generation
    Wang, Congchao
    Yang, Jufeng
    Wang, Kai
    Lai, Shang-Hong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (08) : 10481 - 10499
  • [12] A Fusion Underwater Salient Object Detection Based on Multi-Scale Saliency and Spatial Optimization
    Huang, Weiliang
    Zhu, Daqi
    Chen, Mingzhi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (09)
  • [13] Lightweight Object Detection Combined with Multi-Scale Dilated-Convolution and Multi-Scale Deconvolution
    Yi, Qingming
    Lü, Renyi
    Shi, Min
    Luo, Aiwen
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (12): : 41 - 48
  • [14] MULTI-SCALE REINFORCEMENT LEARNING STRATEGY FOR OBJECT DETECTION
    Luo, Yihao
    Cao, Xiang
    Zhang, Juntao
    Pan, Leixilan
    Wang, Tianjiang
    Feng, Qi
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2015 - 2019
  • [15] Deep Learning for Multi-scale Object Detection: A Survey
    Chen K.-Q.
    Zhu Z.-L.
    Deng X.-M.
    Ma C.-X.
    Wang H.-A.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (04): : 1201 - 1227
  • [16] Multi-scale Semantic Information Fusion for Object Detection
    Chen Hongkun
    Luo Huilan
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (07) : 2087 - 2095
  • [17] Salient Object Detection with CNNs and Multi-scale CRFs
    Xu, Yingyue
    Hong, Xiaopeng
    Zhao, Guoying
    IMAGE ANALYSIS, 2019, 11482 : 233 - 245
  • [18] Multi-scale structural kernel representation for object detection
    Wang, Hao
    Wang, Qilong
    Li, Peihua
    Zuo, Wangmeng
    PATTERN RECOGNITION, 2021, 110
  • [19] MULTI-SCALE SHARED FEATURES FOR CASCADE OBJECT DETECTION
    Lin, Zhe
    Hua, Gang
    Davis, Larry S.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1865 - 1868
  • [20] Multi-scale semantic enhancement network for object detection
    Dongen Guo
    Zechen Wu
    Jiangfan Feng
    Tao Zou
    Scientific Reports, 13