Decontamination of ambient RNA in single-cell RNA-seq with DecontX

被引:0
|
作者
Shiyi Yang
Sean E. Corbett
Yusuke Koga
Zhe Wang
W Evan Johnson
Masanao Yajima
Joshua D. Campbell
机构
[1] Boston University School of Medicine,Division of Computational Biomedicine, Department of Medicine
[2] Boston University,Department of Mathematics & Statistics
来源
关键词
Bayesian mixture model; Decontamination; Single cell; scRNA-seq;
D O I
暂无
中图分类号
学科分类号
摘要
Droplet-based microfluidic devices have become widely used to perform single-cell RNA sequencing (scRNA-seq). However, ambient RNA present in the cell suspension can be aberrantly counted along with a cell’s native mRNA and result in cross-contamination of transcripts between different cell populations. DecontX is a novel Bayesian method to estimate and remove contamination in individual cells. DecontX accurately predicts contamination levels in a mouse-human mixture dataset and removes aberrant expression of marker genes in PBMC datasets. We also compare the contamination levels between four different scRNA-seq protocols. Overall, DecontX can be incorporated into scRNA-seq workflows to improve downstream analyses.
引用
收藏
相关论文
共 50 条
  • [41] Evaluating imputation methods for single-cell RNA-seq data
    Yi Cheng
    Xiuli Ma
    Lang Yuan
    Zhaoguo Sun
    Pingzhang Wang
    BMC Bioinformatics, 24
  • [42] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [43] Single-Cell RNA-Seq Steps Up to the Growth Plate
    Morris, Samantha A.
    TRENDS IN BIOTECHNOLOGY, 2016, 34 (07) : 525 - 527
  • [44] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [45] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    NATURE METHODS, 2017, 14 (06) : 584 - +
  • [46] Quantifying the clusterness and trajectoriness of single-cell RNA-seq data
    Lim, Hong Seo
    Qiu, Peng
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)
  • [47] Quantitative single-cell RNA-seq with unique molecular identifiers
    Islam S.
    Zeisel A.
    Joost S.
    La Manno G.
    Zajac P.
    Kasper M.
    Lönnerberg P.
    Linnarsson S.
    Nature Methods, 2014, 11 (2) : 163 - 166
  • [48] Exponential scaling of single-cell RNA-seq in the past decade
    Svensson, Valentine
    Vento-Tormo, Roser
    Teichmann, Sarah A.
    NATURE PROTOCOLS, 2018, 13 (04) : 599 - 604
  • [49] Single-Cell RNA-Seq of Neurons in the Human Nervous System
    Lin, Ming-Yi
    Dominguez, Reymundo
    Kim, Jae M.
    Souaiaia, Tade
    Walker, Christopher
    Adrian, Camarena
    Nguyen, Joseph
    Herstein, Jennifer
    Francois, Maite Christi
    Mack, William J.
    Liu, Charles
    Evgrafov, Oleg V.
    Knowles, James A.
    Chow, Robert H.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 321A - 321A
  • [50] Investigating the biology of yeast aging by single-cell RNA-seq
    Zhang, Yi
    Zhang, Xiannian
    Kennedy, Brian K.
    AGING-US, 2023, 15 (15): : 7340 - 7342