On the signless Laplacian and normalized signless Laplacian spreads of graphs

被引:0
|
作者
Emina Milovanović
Şerife Burcu Bozkurt Altindağ
Marjan Matejić
Igor Milovanović
机构
[1] University of Niš,Faculty of Electronic Engineering
[2] Karamanoğlu Mehmetbey University,Kamil Özdağ Science Faculty, Department of Mathematics
来源
关键词
Laplacian graph spectra; bipartite graph; spread of graph; 15A18; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G = (V, E), V = {v1, v2, …, vn}, be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d1 ≽ d2 ≽ … ≽ dn. Denote by A and D the adjacency matrix and diagonal vertex degree matrix of G, respectively. The signless Laplacian of G is defined as L+ = D + A and the normalized signless Laplacian matrix as r(G)=γ2+/γn+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\left( G \right) = \gamma _2^ + /\gamma _n^ + $$\end{document}. The normalized signless Laplacian spreads of a connected nonbipartite graph G are defined as l(G)=γ2+−γn+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\left( G \right) = \gamma _2^ + - \gamma _n^ + $$\end{document}, where γ1+⩾γ2+⩾...⩾γn+⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _1^ + \geqslant \gamma _2^ + \geqslant \ldots \geqslant \gamma _n^ + \geqslant 0$$\end{document} are eigenvalues of ℒ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal L}^ + }$$\end{document}. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
引用
收藏
页码:499 / 511
页数:12
相关论文
共 50 条
  • [11] On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [12] On Laplacian and Signless Laplacian Estrada Indices of Graphs
    Azami, Shahroud
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 74 (02) : 411 - 418
  • [13] ON NORMALIZED SIGNLESS LAPLACIAN RESOLVENT ENERGY
    Altindag, S. B. Bozkurt
    Milovanovic, I.
    Milovanovic, E.
    Matejic, M.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (05): : 673 - 687
  • [14] Remarks on the sum of powers of normalized signless Laplacian eigenvalues of graphs
    Altindag, Serife Burcu Bozkurt
    Milovanovic, Igor
    Milovanovic, Emina
    Matejic, Marjan
    FILOMAT, 2023, 37 (28) : 9487 - 9496
  • [15] On the Seidel Laplacian and Seidel Signless Laplacian Polynomials of Graphs
    Ramane, Harishchandra S.
    Ashoka, K.
    Patil, Daneshwari
    Parvathalu, B.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 155 - 168
  • [16] Graphs with maximum Laplacian and signless Laplacian Estrada index
    Gutman, Ivan
    Medina C, Luis
    Pizarro, Pamela
    Robbiano, Maria
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2664 - 2671
  • [17] On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jacobus H.
    Oboudi, Mohammad Reza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [18] SPECTRA OF CLOSENESS LAPLACIAN AND CLOSENESS SIGNLESS LAPLACIAN OF GRAPHS
    Zheng, Lu
    Zhou, Bo
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3525 - 3543
  • [19] On the Laplacian and signless Laplacian polynomials of graphs with semiregular automorphisms
    Arezoomand, Majid
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 52 (01) : 21 - 32
  • [20] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324