Nonparametric geostatistical risk mapping

被引:0
|
作者
Rubén Fernández-Casal
Sergio Castillo-Páez
Mario Francisco-Fernández
机构
[1] Universidade da Coruña,Departamento de Matemáticas, Facultad de Informática
[2] Universidad de Vigo,Departamento de Estadística e Investigación Operativa
[3] Universidad de las Fuerzas Armadas ESPE,undefined
关键词
Local linear regression; Nonparametric estimation; Kriging; Bias-corrected variogram estimation; Bootstrap;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a fully nonparametric geostatistical approach to estimate threshold exceeding probabilities is proposed. To estimate the large-scale variability (spatial trend) of the process, the nonparametric local linear regression estimator, with the bandwidth selected by a method that takes the spatial dependence into account, is used. A bias-corrected nonparametric estimator of the variogram, obtained from the nonparametric residuals, is proposed to estimate the small-scale variability. Finally, a bootstrap algorithm is designed to estimate the unconditional probabilities of exceeding a threshold value at any location. The behavior of this approach is evaluated through simulation and with an application to a real data set.
引用
收藏
页码:675 / 684
页数:9
相关论文
共 50 条
  • [1] Nonparametric geostatistical risk mapping
    Fernandez-Casal, Ruben
    Castillo-Paez, Sergio
    Francisco-Fernandez, Mario
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (03) : 675 - 684
  • [2] Geostatistical analysis and mapping of malaria risk in children of Mozambique
    Ejigu, Bedilu Alamirie
    PLOS ONE, 2020, 15 (11):
  • [3] Nonparametric Conditional Risk Mapping Under Heteroscedasticity
    Rubén Fernández-Casal
    Sergio Castillo-Páez
    Mario Francisco-Fernández
    Journal of Agricultural, Biological and Environmental Statistics, 2024, 29 : 56 - 72
  • [4] Nonparametric Conditional Risk Mapping Under Heteroscedasticity
    Fernandez-Casal, Ruben
    Castillo-Paez, Sergio
    Francisco-Fernandez, Mario
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024, 29 (01) : 56 - 72
  • [5] Mapping Malaria Risk in Bangladesh Using Bayesian Geostatistical Models
    Reid, Heidi
    Haque, Ubydul
    Clements, Archie C. A.
    Tatem, Andrew J.
    Vallely, Andrew
    Ahmed, Syed Masud
    Islam, Akramul
    Haque, Rashidul
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2010, 83 (04): : 861 - 867
  • [6] An application of geostatistical and GIS techniques to indoor radon risk mapping
    Zhu, HC
    GEOENV III - GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS, 2001, 11 : 193 - 203
  • [7] Predictive risk mapping of schistosomiasis in Brazil using Bayesian geostatistical models
    Scholte, Ronaldo G. C.
    Gosoniu, Laura
    Malone, John B.
    Chammartin, Frederique
    Utzinger, Juerg
    Vounatsou, Penelope
    ACTA TROPICA, 2014, 132 : 57 - 63
  • [8] Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques
    Zhu, HC
    Charlet, JM
    Poffijn, A
    SCIENCE OF THE TOTAL ENVIRONMENT, 2001, 272 (1-3) : 203 - 210
  • [9] Nonparametric bootstrap approach for unconditional risk mapping under heteroscedasticity
    Castillo-Paez, Sergio
    Fernandez-Casal, Ruben
    Garcia-Soidan, Pilar
    SPATIAL STATISTICS, 2020, 40
  • [10] Simulation-based assessment of a geostatistical approach for estimation and mapping of the risk of cancer
    Goovaerts, P
    GEOSTATISTICS BANFF 2004, VOLS 1 AND 2, 2005, 14 : 787 - 796