Nonparametric bootstrap approach for unconditional risk mapping under heteroscedasticity

被引:2
|
作者
Castillo-Paez, Sergio [1 ]
Fernandez-Casal, Ruben [2 ,3 ]
Garcia-Soidan, Pilar [4 ]
机构
[1] Univ Fuerzas Armadas ESPE, Dept Ciencias Exactas, Sangolqui, Ecuador
[2] Univ A Coruna, Dept Matemat, La Coruna, Spain
[3] Univ A Coruna, Ctr Invest CITIC, La Coruna, Spain
[4] Univ Vigo, Dept Estadist & Invest Operat, Vigo, Spain
关键词
Heteroscedasticity; Local linear regression; Resampling method;
D O I
10.1016/j.spasta.2019.100389
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The current work provides a nonparametric resampling procedure for approximating the (unconditional) probability that a spatial variable surpasses a prefixed threshold value. The existing approaches for the latter issue require assuming constant variance throughout the observation region, thus our proposal has been designed to be valid under heteroscedasticity of the spatial process. To develop the new methodology, nonparametric estimates of the variance and the semivariogram functions are computed by using bias-corrected residuals, which are then employed to derive bootstrap replicates for approximating the aforementioned risk. The performance of this mechanism is checked through numerical studies with simulated data, where a comparison with a semiparametric method is also included. In addition, the practical application of this approach is exemplified by estimating the risk of rainwater accumulation in the United States, during a specific period. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Nonparametric Conditional Risk Mapping Under Heteroscedasticity
    Fernandez-Casal, Ruben
    Castillo-Paez, Sergio
    Francisco-Fernandez, Mario
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024, 29 (01) : 56 - 72
  • [2] Nonparametric Conditional Risk Mapping Under Heteroscedasticity
    Rubén Fernández-Casal
    Sergio Castillo-Páez
    Mario Francisco-Fernández
    Journal of Agricultural, Biological and Environmental Statistics, 2024, 29 : 56 - 72
  • [3] A parametric bootstrap solution to the MANOVA under heteroscedasticity
    Krishnamoorthy, K.
    Lu, Fei
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (08) : 873 - 887
  • [4] Bootstrap test for a structural break under possible heteroscedasticity
    Namba, Akio
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 4127 - 4139
  • [5] Parametric bootstrap tests for unbalanced nested designs under heteroscedasticity
    Xu, Li-Wen
    Mei, Bo
    Chen, Ran-Ran
    Guo, Hong-Xia
    Wang, Jia-jie
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (09) : 2059 - 2070
  • [6] Nonparametric estimation and application of conditional treatment effect under heteroscedasticity
    Ji, Yuanyuan
    Xie, Ruoqing
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2020, 40 (06): : 1382 - 1397
  • [7] A wild bootstrap approach for nonparametric repeated measurements
    Friedrich, Sarah
    Konietschke, Frank
    Pauly, Markus
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 113 : 38 - 52
  • [8] A bootstrap study of variance estimation under heteroscedasticity using genetic algorithm
    Ghosh H.
    Iquebal M.A.
    Prajneshu
    Journal of Statistical Theory and Practice, 2008, 2 (1) : 56 - 69
  • [9] Bootstrapping Nonparametric Prediction Intervals for Conditional Value-at-Risk with Heteroscedasticity
    Torsen, Emmanuel
    Seknewna, Lema Logamou
    JOURNAL OF PROBABILITY AND STATISTICS, 2019, 2019