Krein Extension of an Even-Order Differential Operator

被引:0
|
作者
Ya. I. Granovskyi
L. L. Oridoroga
机构
[1] Institute of Applied Mathematics and Mechanics,
[2] Donetsk National University,undefined
来源
Differential Equations | 2018年 / 54卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We describe the Krein extension of the minimal operator associated with the expression A:= (−1)nd2n/dx2n on the interval [a, b] in terms of boundary conditions. We also describe all nonnegative extensions of the operator A and extensions with finitely many negative squares.
引用
收藏
页码:551 / 556
页数:5
相关论文
共 50 条
  • [31] LINEARIZED OSCILLATIONS FOR EVEN-ORDER NEUTRAL DIFFERENTIAL-EQUATIONS
    LADAS, G
    QIAN, C
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 159 (01) : 237 - 250
  • [32] Linearized oscillation results for even-order neutral differential equations
    Shen, JH
    Yu, JS
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (01) : 1 - 13
  • [33] ASYMPTOTIC DICHOTOMY IN A CLASS OF EVEN-ORDER NEUTRAL DIFFERENTIAL EQUATIONS
    Lin, Jie-Xian
    Xu, Guo-Liang
    Wang, Gen-Qiang
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2014, 13 (01): : 57 - 65
  • [34] Improved oscillation criteria for even-order neutral differential equations
    Chatzarakis, George E.
    Jadlovska, Irena
    Tunc, Ercan
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2021, 41 (04): : 213 - 219
  • [35] Oscillatory Behavior for Even-order Nonlinear Functional Differential Equations
    Zhang, Quanxin
    Gao, Li
    Li, Chunxia
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 2822 - 2825
  • [36] NEW OSCILLATION CONSTRAINTS FOR EVEN-ORDER DELAY DIFFERENTIAL EQUATIONS
    Moaaz, Osama
    Anis, Mona
    El-Deeb, Ahmed A.
    Elshenhab, Ahmed M.
    OPUSCULA MATHEMATICA, 2023, 43 (03) : 455 - 467
  • [37] Linearized Oscillation Results for Even-Order Neutral Differential Equations
    J. H. Shen
    J. S. Yu
    Czechoslovak Mathematical Journal, 2001, 51 : 1 - 13
  • [38] Initial-Boundary Value Problem for a Degenerate High Even-Order Partial Differential Equation with the Bessel Operator
    Urinov, A. K.
    Azizov, M. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (02) : 864 - 874
  • [39] EVEN-ORDER SUBHARMONIC OSCILLATIONS
    CUNNINGHAM, WJ
    JOURNAL OF APPLIED PHYSICS, 1956, 27 (11) : 1374 - 1375
  • [40] CONTINUOUS SPECTRA OF AN EVEN ORDER DIFFERENTIAL OPERATOR
    HINTON, D
    ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (03) : 444 - 450