Analysis of solution trajectories of fractional-order systems

被引:0
|
作者
Madhuri Patil
Sachin Bhalekar
机构
[1] Shivaji University,Department of Mathematics
[2] University of Hyderabad,School of mathematics and statistics
来源
Pramana | 2020年 / 94卷
关键词
Fractional derivative; Mittag–Leffler functions; Orthogonal transformation; Frenet apparatus; 05.45.–a; 02.40.–k; 45.30.+s;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of solution trajectories usually changes if we replace the classical derivative in a system with a fractional one. In this article, we throw light on the relation between two trajectories X(t) and Y(t) of such a system, where the initial point Y(0) is at some point X(t1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(t_1)$$\end{document} of the trajectory X(t). In contrast with classical systems, these trajectories X and Y do not follow the same path. Further, we provide a Frenet apparatus for both trajectories in various cases and discuss their effect.
引用
收藏
相关论文
共 50 条
  • [31] Fractional symbolic network entropy analysis for the fractional-order chaotic systems
    He, Shaobo
    Sun, Kehui
    Wu, Xianming
    PHYSICA SCRIPTA, 2020, 95 (03)
  • [32] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Ramezani, Abdolrahman
    Safarinejadian, Behrouz
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 3756 - 3784
  • [33] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Abdolrahman Ramezani
    Behrouz Safarinejadian
    Circuits, Systems, and Signal Processing, 2018, 37 : 3756 - 3784
  • [34] Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems
    Munoz-Vazquez, Aldo Jonathan
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (07):
  • [35] An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems
    Qin, Ya
    Khan, Adnan
    Ali, Izaz
    Al Qurashi, Maysaa
    Khan, Hassan
    Shah, Rasool
    Baleanu, Dumitru
    ENERGIES, 2020, 13 (11)
  • [36] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    CHINESE PHYSICS B, 2010, 19 (09)
  • [37] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, (09) : 237 - 242
  • [38] Synchronization of fractional-order chaotic systems based on the fractional-order sliding mode controller
    Yan Xiaomei
    Shang Ting
    Zhao Xiaoguo
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 429 - 434
  • [39] Dynamical Analysis of a Fractional-Order Boost Converter with Fractional-Order Memristive Load
    Wu, Chaojun
    Zhang, Qi
    Yang, Ningning
    Jia, Rong
    Liu, Chongxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (03):
  • [40] Fractional-Order Optimal Control of Fractional-Order Linear Vibration Systems with Time Delay
    Balochian, Saeed
    Rajaee, Nahid
    INTERNATIONAL JOURNAL OF SYSTEM DYNAMICS APPLICATIONS, 2018, 7 (03) : 72 - 93