Upper bounds for the Steklov eigenvalues on trees

被引:0
|
作者
Zunwu He
Bobo Hua
机构
[1] Fudan University,School of Mathematical Sciences
[2] Fudan University,School of Mathematical Sciences, LMNS
[3] Fudan University,Shanghai Center for Mathematical Sciences, Jiangwan Campus
关键词
05C05; 47A75; 49J40; 49R05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the upper bounds for discrete Steklov eigenvalues on trees via geometric quantities. For a finite tree, we prove sharp upper bounds for the first nonzero Steklov eigenvalue by the reciprocal of the size of the boundary and the diameter respectively. We also prove similar estimates for higher order Steklov eigenvalues.
引用
收藏
相关论文
共 50 条
  • [21] Geometric Bounds for Low Steklov Eigenvalues of Finite Volume Hyperbolic Surfaces
    Hassannezhad, Asma
    Metras, Antoine
    Perrin, Helene
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (05)
  • [22] Asymptotic Lower Bounds for Eigenvalues of the Steklov Eigenvalue Problem with Variable Coefficients
    Zhang, Yu
    Bi, Hai
    Yang, Yidu
    APPLICATIONS OF MATHEMATICS, 2021, 66 (01) : 1 - 19
  • [23] Sharp bounds for the first nonzero Steklov eigenvalues for f-Laplacians
    Huang, Guangyue
    Ma, Bingqing
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (04) : 770 - 783
  • [24] Asymptotic Lower Bounds for Eigenvalues of the Steklov Eigenvalue Problem with Variable Coefficients
    Yu Zhang
    Hai Bi
    Yidu Yang
    Applications of Mathematics, 2021, 66 : 1 - 19
  • [25] An explicit formula for eigenvalues of Bethe trees and upper bounds on the largest eigenvalue of any tree
    Rojo, Oscar
    Robbiano, Maria
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (01) : 138 - 150
  • [26] The upper bound of the harmonic mean of the Steklov eigenvalues in curved spaces
    Chen, Hang
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (03) : 931 - 944
  • [27] UPPER AND LOWER BOUNDS OF WKB EIGENVALUES
    ARAI, T
    PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (02): : 669 - 670
  • [28] Lower and upper bounds for stokes eigenvalues
    Yue, Yifan
    Chen, Hongtao
    Zhang, Shuo
    CALCOLO, 2024, 61 (03)
  • [29] Schrodinger upper bounds to semirelativistic eigenvalues
    Hall, RL
    Lucha, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (37): : 7997 - 8002
  • [30] Upper bounds for the eigenvalues of Hessian equations
    Della Pietra, Francesco
    Gavitone, Nunzia
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) : 923 - 938