Predicting Homoclinic and Heteroclinic Bifurcation of Generalized Duffing-Harmonic-van de Pol Oscillator

被引:0
|
作者
Zhenbo Li
Jiashi Tang
Ping Cai
机构
[1] Hunan University,College of Mechanical and Vehicle Engineering
关键词
Generalized Duffing-harmonic-van de Pol oscillator; Homoclinic bifurcation; Heteroclinic bifurcation; Nonlinear time transformation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a novel construction of solutions of nonlinear oscillators are proposed which can be called as the quadratic generalized harmonic function. Based on this novel solution, a modified generalized harmonic function Lindstedt–Poincaré method is presented which call the quadratic generalized harmonic function perturbation method. Via this method, the homoclinic and heteroclinic bifurcations of Duffing-harmonic-van de Pol oscillator are investigated. The critical value of the homoclinic and heteroclinic bifurcation parameters are predicted. Meanwhile, the analytical solutions of homoclinic and heteroclinic orbits of this oscillator are also attained. To illustrate the accuracy of the present method, all the above-mentioned results are compared with those of Runge–Kutta method, which shows that the proposed method is effective and feasible. In addition, the present method can be utilized in study many other oscillators.
引用
收藏
页码:19 / 37
页数:18
相关论文
共 50 条
  • [21] Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control
    Ma, Suqi
    Lu, Qishao
    Feng, Zhaosheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 993 - 1007
  • [22] Super and sub-harmonic synchronization in generalized van der Pol oscillator
    Naprstek, Jiri
    Fischer, Cyril
    COMPUTERS & STRUCTURES, 2019, 224
  • [23] A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator
    Algaba, A
    Freire, E
    Gamero, E
    Rodríguez-Luis, AJ
    NONLINEAR DYNAMICS, 2000, 22 (03) : 249 - 269
  • [24] Stochastic bifurcation in Duffing-van der Pol oscillators
    He, Q
    Xu, W
    Rong, HW
    Fang, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 338 (3-4) : 319 - 334
  • [25] A van der Pol-Duffing Oscillator with Indefinite Degree
    Chen, Hebai
    Jin, Jie
    Wang, Zhaoxia
    Zhang, Baodong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [26] FREQUENCY RESPONSE OF A VAN DER POL-DUFFING OSCILLATOR
    HAAS, VB
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (02): : 334 - &
  • [27] A van der Pol-Duffing Oscillator with Indefinite Degree
    Hebai Chen
    Jie Jin
    Zhaoxia Wang
    Baodong Zhang
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [28] On bifurcations and chaos in the Van der Pol-Duffing oscillator
    Bykov, VV
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (09): : 1084 - 1096
  • [29] Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator
    Chedjou, JC
    Fotsin, HB
    Woafo, P
    Domngang, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (06): : 748 - 757
  • [30] Primary resonance of fractional-order Duffing–van der Pol oscillator by harmonic balance method
    李素娟
    牛江川
    李向红
    Chinese Physics B, 2018, 27 (12) : 215 - 220