Predicting Homoclinic and Heteroclinic Bifurcation of Generalized Duffing-Harmonic-van de Pol Oscillator

被引:0
|
作者
Zhenbo Li
Jiashi Tang
Ping Cai
机构
[1] Hunan University,College of Mechanical and Vehicle Engineering
关键词
Generalized Duffing-harmonic-van de Pol oscillator; Homoclinic bifurcation; Heteroclinic bifurcation; Nonlinear time transformation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a novel construction of solutions of nonlinear oscillators are proposed which can be called as the quadratic generalized harmonic function. Based on this novel solution, a modified generalized harmonic function Lindstedt–Poincaré method is presented which call the quadratic generalized harmonic function perturbation method. Via this method, the homoclinic and heteroclinic bifurcations of Duffing-harmonic-van de Pol oscillator are investigated. The critical value of the homoclinic and heteroclinic bifurcation parameters are predicted. Meanwhile, the analytical solutions of homoclinic and heteroclinic orbits of this oscillator are also attained. To illustrate the accuracy of the present method, all the above-mentioned results are compared with those of Runge–Kutta method, which shows that the proposed method is effective and feasible. In addition, the present method can be utilized in study many other oscillators.
引用
收藏
页码:19 / 37
页数:18
相关论文
共 50 条