Some results on L-algebras

被引:0
|
作者
Mona Aaly Kologani
机构
[1] Shahid Beheshti University,Department of Mathematics, Faculty of Mathematical Sciences
来源
Soft Computing | 2023年 / 27卷
关键词
-algebra; Ideal; Positive implicative ideal; Implicative ideal; Commutative ideal;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we intend to investigate different types of L-algebras and provide finite and infinite examples of them. Then, we state the concept of ideal in L-algebras, equivalence definitions and examples of it, and introduce different types of ideals, including positive implicative and implicative ideals, and examine definitions equivalent to them and the relationship between them. In addition, we define the quotient structure made by different kind of ideal, and we show that if L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} is a CKL-algebra and I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I$$\end{document} is a commutative ideal of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}, then LI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dfrac{L}{I}$$\end{document} is a commutative BCK-algebra.
引用
收藏
页码:13765 / 13777
页数:12
相关论文
共 50 条
  • [21] The extension of L-algebras and states
    Mao, Lingling
    Xin, Xiaolong
    Zhang, Shunli
    FUZZY SETS AND SYSTEMS, 2023, 455 : 35 - 52
  • [22] ON THE ENUMERATION OF FINITE L-ALGEBRAS
    Dietzel, C.
    Menchon, P.
    Vendramin, L.
    MATHEMATICS OF COMPUTATION, 2023, 92 (341) : 1363 - 1381
  • [23] A class of cancellable L-algebras
    Ruan, Xianglong
    SOFT COMPUTING, 2024, 28 (02) : 883 - 886
  • [24] POST L-ALGEBRAS AND RINGS
    YAQUB, FM
    MATHEMATISCHE NACHRICHTEN, 1981, 101 : 91 - 99
  • [25] On the cancellation problem for L-algebras
    Ruan, Xianglong
    Liu, Xiaochuan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (01)
  • [26] On the cancellation problem for L-algebras
    Ruan, Xianglong
    Liu, Xiaochuan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (14)
  • [27] Order topologies on l-algebras
    Montalvo, F
    Pulgarín, A
    Requejo, B
    TOPOLOGY AND ITS APPLICATIONS, 2004, 137 (1-3) : 225 - 236
  • [28] Pseudo-MV algebras as L-algebras
    Yang, Yichuan
    Rump, Wolfgang
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2012, 19 (5-6) : 621 - 632
  • [29] The geometry of discrete L-algebras
    Rump, Wolfgang
    ADVANCES IN GEOMETRY, 2023, 23 (04) : 543 - 565
  • [30] A class of cancellable L-algebras
    Xianglong Ruan
    Soft Computing, 2024, 28 : 883 - 886