The main aim of this paper is to use the continuation theorem of coincidence degree theory
for studying the existence of periodic solutions to a kind of neutral functional differential equation as
follows:\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
{\left( {x{\left( t \right)} - {\sum\limits_{i = 1}^n {c_{i} x{\left( {t - r_{i} } \right)}} }} \right)}^{{\prime \prime }} = f{\left( {x{\left( t \right)}} \right)}{x}\ifmmode{'}\else$'$\fi{\left( t \right)} + g{\left( {x{\left( {t - \tau } \right)}} \right)} + p{\left( t \right)}.
$$\end{document}
In order to do so, we analyze the structure of the linear difference operator A : C2π →C2π, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
{\left[ {Ax} \right]}{\left( t \right)} = x{\left( t \right)} - {\sum\nolimits_{i = 1}^n {c_{i} x{\left( {t - r_{i} } \right)}} }
$$\end{document} to determine some fundamental properties first, which we are going to use
throughout this paper. Meanwhile, we also prove some new inequalities which are useful for estimating
a priori bounds of periodic solutions.
机构:
Univ Mohammed First, Polydisciplinary Fac Nador, Dept Math, Oujda, MoroccoUniv Mohammed First, Polydisciplinary Fac Nador, Dept Math, Oujda, Morocco
Moutaouekkil, Loubna
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY,
2021,
27
(01):
: 44
-
56
机构:
Hunan City Univ, Dept Math & Comp Sci, Yiyang 413000, Hunan, Peoples R ChinaHunan City Univ, Dept Math & Comp Sci, Yiyang 413000, Hunan, Peoples R China
Xiao, Jinsong
Liu, Bingwen
论文数: 0引用数: 0
h-index: 0
机构:
Jiaxing Univ, Coll Math & Informat Sci, Jiaxing 314001, Zhejiang, Peoples R ChinaHunan City Univ, Dept Math & Comp Sci, Yiyang 413000, Hunan, Peoples R China