Powder metallurgy technology of NiTi shape memory alloy

被引:0
|
作者
J. M. Dutkiewicz
W. Maziarz
T. Czeppe
L. Lityńska
W. K. Nowacki
S. P. Gadaj
J. Luckner
E. A. Pieczyska
机构
[1] Institute of Metallurgy and Materials Science of the Polish Academy of Sciences,
[2] Institute of Fundamental Technological Problems of the Polish Academy of Sciences,undefined
关键词
Martensite; Shape Memory; European Physical Journal Special Topic; NiTi Alloy; NiTi Shape Memory Alloy;
D O I
暂无
中图分类号
学科分类号
摘要
Powder metallurgy technology was elaborated for consolidation of shape memory NiTi powders. The shape memory alloy was compacted from the prealloyed powder delivered by Memry SA. The powder shows Ms = 10°C and As = -34°C as results from DSC measurements. The samples were hot pressed in the as delivered spherical particle's state. The hot compaction was performed in a specially constructed vacuum press, at temperature of 680°C and pressure of 400 MPa. The alloy powder was encapsulated in copper capsules prior to hot pressing to avoid oxidation or carbides formation. The alloy after hot vacuum compaction at 680°C (i.e. within the B2 NiTi stability range) has shown similar transformation range as the powder. The porosity of samples compacted in the as delivered state was only 1%. The samples tested in compression up to ε = 0.06 have shown partial superelastic effect due to martensitic reversible transform- ation which started at the stress above 300 MPa and returned back to ε = 0.015 after unloading. They have shown also a high ultimate compression strength of 1600 MPa. Measurements of the samples temperature changes during the process allowed to detect the temperature increase above 12°C for the strain rate 10-2 s-1 accompanied the exothermic martensite transformation during loading and the temperature decrease related to the reverse endothermic transformation during unloading.
引用
收藏
页码:59 / 65
页数:6
相关论文
共 50 条
  • [21] Nanofretting behaviors of NiTi shape memory alloy
    Qian, Linmao
    Zhou, Zhongrong
    Sun, Qingping
    Yan, Wenyi
    WEAR, 2007, 263 (1-6 SPEC. ISS.) : 501 - 507
  • [22] STUDY ON THE HOT-PRESSED POWDER-METALLURGY OF A TINI SHAPE MEMORY ALLOY
    SEKIGUCHI, Y
    FUNAMI, K
    FUNAKUBO, H
    SUZUKI, Y
    JOURNAL DE PHYSIQUE, 1982, 43 (NC-4): : 279 - 284
  • [23] On the shock response of the shape memory alloy, NiTi
    Millett, JCF
    Bourne, NK
    Gray, GT
    Stevens, GS
    SHOCK COMPRESSION OF CONDENSED MATTER-2001, PTS 1 AND 2, PROCEEDINGS, 2002, 620 : 579 - 582
  • [24] Actuation characteristics of NiTi shape memory alloy
    Cui, Lishan
    Qi, Min
    Shi, Ping
    Chen, Feixia
    Yang, Dazhi
    Cai Liao Ke Xue Yu Gong/Material Science and Technology, 1996, 4 (02): : 1 - 5
  • [25] Shape Memory Behavior of Porous NiTi Alloy
    Mehmet Kaya
    Ömer Çakmak
    Metallurgical and Materials Transactions A, 2016, 47 : 1499 - 1503
  • [26] On the damping behaviour of NiTi shape memory alloy
    Liu, Y
    van Humbeeck, J
    JOURNAL DE PHYSIQUE IV, 1997, 7 (C5): : 519 - 524
  • [27] Model of a NiTi shape memory alloy actuator
    Malukhin, Kostyantyn
    Ehmann, Kornel
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2015, 26 (04) : 386 - 399
  • [28] Shape Memory Behavior of Porous NiTi Alloy
    Kaya, Mehmet
    Cakmak, Omer
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (04): : 1499 - 1503
  • [29] Surface oxidation of NiTi shape memory alloy
    Firstov, GS
    Vitchev, RG
    Kumar, H
    Blanpain, B
    Van Humbeeck, J
    BIOMATERIALS, 2002, 23 (24) : 4863 - 4871
  • [30] Thermopower behavior for the shape memory alloy NiTi
    Lee, JY
    McIntosh, GC
    Kaiser, AB
    Park, YW
    Kaack, M
    Pelzl, J
    Kim, CK
    Nahm, K
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) : 6223 - 6227