The use of multiple imputation (MI) in cluster randomised trials with suspected missing not at random (MNAR) outcome

被引:0
|
作者
Rebecca Playle
Elinor Coulman
Dunla Gallagher
Sharon Simpson
机构
[1] Cardiff University,South East Wales Trials Unit
[2] University of Glasgow,undefined
来源
Trials | / 16卷
关键词
Multiple Imputation; Imputation Model; Trial Team; Eating Programme; Cluster Trial;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Multiple imputation for handling missing outcome data in randomized trials involving a mixture of independent and paired data
    Sullivan, Thomas R.
    Yelland, Lisa N.
    Moreno-Betancur, Margarita
    Lee, Katherine J.
    STATISTICS IN MEDICINE, 2021, 40 (27) : 6008 - 6020
  • [22] Auxiliary Variables in Multiple Imputation When Data Are Missing Not at Random
    Mustillo, Sarah
    Kwon, Soyoung
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 2015, 39 (02): : 73 - 91
  • [23] Missing Data Imputation Through the Use of the Random Forest Algorithm
    Pantanowitz, Adam
    Marwala, Tshilidzi
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, 2009, 61 : 53 - 62
  • [24] When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts
    Jakobsen, Janus Christian
    Gluud, Christian
    Wetterslev, Jorn
    Winkel, Per
    BMC MEDICAL RESEARCH METHODOLOGY, 2017, 17
  • [25] When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts
    Janus Christian Jakobsen
    Christian Gluud
    Jørn Wetterslev
    Per Winkel
    BMC Medical Research Methodology, 17
  • [26] Handling of Missing Outcome Data in Acute Stroke Trials: Advantages of Multiple Imputation Using Baseline and Postbaseline Variables
    Young-Saver, Dashiell F.
    Gornbein, Jeffrey
    Starkman, Sidney
    Saver, Jeffrey L.
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2018, 27 (12): : 3662 - 3669
  • [27] Sensitivity analysis for clinical trials with missing continuous outcome data using controlled multiple imputation: A practical guide
    Cro, Suzie
    Morris, Tim P.
    Kenward, Michael G.
    Carpenter, James R.
    STATISTICS IN MEDICINE, 2020, 39 (21) : 2815 - 2842
  • [28] Randomization tests in clinical trials with multiple imputation for handling missing data
    Ivanova, Anastasia
    Lederman, Seth
    Stark, Philip B.
    Sullivan, Gregory
    Vaughn, Ben
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2022, 32 (03) : 441 - 449
  • [29] Return-to-baseline multiple imputation for missing values in clinical trials
    Qu, Yongming
    Dai, Biyue
    PHARMACEUTICAL STATISTICS, 2022, 21 (03) : 641 - 653
  • [30] Considerations of multiple imputation approaches for handling missing data in clinical trials
    Quan, Hui
    Qi, Li
    Luo, Xiaodong
    Darchy, Loic
    CONTEMPORARY CLINICAL TRIALS, 2018, 70 : 62 - 71