Lightweight attention convolutional neural network through network slimming for robust facial expression recognition

被引:0
|
作者
Hui Ma
Turgay Celik
Heng-Chao Li
机构
[1] Southwest Jiaotong University,School of Information Science and Technology
[2] University of the Witwatersrand,School of Electrical and Information Engineerig
来源
关键词
Facial expression recognition (FER); Convolutional neural network (CNN); Channel attention; Network slimming;
D O I
暂无
中图分类号
学科分类号
摘要
Deep convolutional neural networks (DCNNs) have achieved outstanding results in facial expression recognition (FER). However, their runtime memory and computational resource requirements make it challenging to deploy them on resource-constrained devices, such as mobile devices. In this paper, we propose a novel lightweight attention DCNN (LA-Net) for robust FER, which uses squeeze-and-excitation (SE) modules and the network slimming strategy. First, we combine the SE modules with the CNN network, which assigns a certain weight to each feature channel. This enables LA-Net to focus on learning the prominent facial features, reduce redundant information, and finally extract discriminative features from facial images. Then, we use the network slimming method to further reduce the model’s size, which results in a thin and compact network that uses less runtime memory and computational operations with minimal accuracy loss. The proposed LA-Net model can achieve 95.52%, 87.00% and 100% test accuracy on KDEF, RAF-DB and FERG-DB FER datasets, respectively. The experimental results show that the proposed method achieves better or comparable results than state-of-the-art FER methods and significantly reduces the computational cost and the number of parameters, with better generalization capability and robustness.
引用
收藏
页码:1507 / 1515
页数:8
相关论文
共 50 条
  • [41] Three convolutional neural network models for facial expression recognition in the wild
    Shao, Jie
    Qian, Yongsheng
    NEUROCOMPUTING, 2019, 355 : 82 - 92
  • [42] Identity-Aware Convolutional Neural Network for Facial Expression Recognition
    Meng, Zibo
    Liu, Ping
    Cai, Jie
    Han, Shizhong
    Tong, Yan
    2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, : 558 - 565
  • [43] Self-Difference Convolutional Neural Network for Facial Expression Recognition
    Liu, Leyuan
    Jiang, Rubin
    Huo, Jiao
    Chen, Jingying
    SENSORS, 2021, 21 (06)
  • [44] Facial Expression Recognition Based on Random Forest and Convolutional Neural Network
    Wang, Yingying
    Li, Yibin
    Song, Yong
    Rong, Xuewen
    INFORMATION, 2019, 10 (12)
  • [45] Facial Expression Recognition using Convolutional Neural Network with Data Augmentation
    Ahmed, Tawsin Uddin
    Hossain, Sazzad
    Hossain, Mohammad Shahadat
    Ul Islam, Raihan
    Andersson, Karl
    2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 336 - 341
  • [46] POOLING MAP ADAPTATION IN CONVOLUTIONAL NEURAL NETWORK FOR FACIAL EXPRESSION RECOGNITION
    Li, Zhiyuan
    Han, Shizhong
    Khan, Ahmed Shehab
    Cai, Jie
    Meng, Zibo
    O'Reilly, James
    Tong, Yan
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1108 - 1113
  • [47] Effective Facial Expression Recognition via the Boosted Convolutional Neural Network
    Liu, Zhenhai
    Wang, Hanzi
    Yan, Yan
    Guo, Guanjun
    COMPUTER VISION, CCCV 2015, PT I, 2015, 546 : 179 - 188
  • [48] Research on Facial Expression Recognition Algorithm Based on Convolutional Neural Network
    Zhang, Xiaobo
    Yang, Yuliang
    Zhang, Linhao
    Li, Wanchong
    Dang, Shuai
    Wang, Peng
    Zhu, Mengyu
    2019 28TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2019, : 271 - 275
  • [49] Facial Expression Recognition Using Salient Features and Convolutional Neural Network
    Uddin, Md. Zia
    Khaksar, Weria
    Torresen, Jim
    IEEE ACCESS, 2017, 5 : 26146 - 26161
  • [50] Performance Study of Facial Expression Recognition Using Convolutional Neural Network
    Aza, Marde Fasma'ul
    Suciati, Nanik
    Hidayati, Shintami Chusnul
    2020 6TH INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0: TOWARDS INNOVATION IN DISASTER MANAGEMENT, 2020, : 121 - 126