Most Invariant Manifolds of Conservative Systems have Transitive Closure

被引:0
|
作者
Fábio Castro
Fernando Oliveira
机构
[1] Universidade Federal do Espírito Santo,Departamento de Matemática Centro de Ciências Exatas
[2] Universidade Federal de Minas Gerais,Departamento de Matemática, Instituto de Ciências Exatas
关键词
Chain transitivity; Invariant manifold; Genericity; Volume preserving flows;
D O I
暂无
中图分类号
学科分类号
摘要
The main result of this work in the following: for generic volume preserving flows on compact manifolds with the Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document} topology, 1≤r≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le \infty $$\end{document}, the closure of every invariant manifold of periodic orbits and singularities is a chain transitive set. This was already known for generic symplectic and volume preserving diffeomorphisms.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 50 条