Most Invariant Manifolds of Conservative Systems have Transitive Closure

被引:0
|
作者
Fábio Castro
Fernando Oliveira
机构
[1] Universidade Federal do Espírito Santo,Departamento de Matemática Centro de Ciências Exatas
[2] Universidade Federal de Minas Gerais,Departamento de Matemática, Instituto de Ciências Exatas
关键词
Chain transitivity; Invariant manifold; Genericity; Volume preserving flows;
D O I
暂无
中图分类号
学科分类号
摘要
The main result of this work in the following: for generic volume preserving flows on compact manifolds with the Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document} topology, 1≤r≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le \infty $$\end{document}, the closure of every invariant manifold of periodic orbits and singularities is a chain transitive set. This was already known for generic symplectic and volume preserving diffeomorphisms.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 50 条
  • [1] Most Invariant Manifolds of Conservative Systems have Transitive Closure
    Castro, Fabio
    Oliveira, Fernando
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (01) : 1 - 13
  • [2] Specific Features of Families of Invariant Manifolds of Conservative Systems
    Irtegov, V. D.
    RUSSIAN MATHEMATICS, 2010, 54 (08) : 34 - 40
  • [3] On the peculiar properties of families of invariant manifolds of conservative systems
    Irtegov, Valentin
    Titorenko, Tatyana
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, 4770 : 195 - +
  • [4] ON INVARIANT SETS AND INVARIANT MANIFOLDS OF DIFFERENTIAL SYSTEMS
    JARNIK, J
    KURZWEIL, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 6 (02) : 247 - &
  • [5] Invariant manifolds for dissipative systems
    Ramm, A. G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [6] On invariant manifolds of nonholonomic systems
    Kozlov, Valery V.
    REGULAR & CHAOTIC DYNAMICS, 2012, 17 (02): : 131 - 141
  • [7] On Invariant Manifolds of Lagrange Systems
    Irtegov, Valentin
    Titorenko, Tatyana
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2011, 6885 : 226 - 238
  • [8] Invariant manifolds for nonsmooth systems
    Weiss, D.
    Kuepper, T.
    Hosham, H. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (22) : 1895 - 1902
  • [9] Invariant Manifolds of Complex Systems
    Ginoux, Jean-Marc
    Rosseto, Bruno
    COMPLEX SYSTEMS AND SELF-ORGANIZATION MODELLING, 2009, : 41 - 49
  • [10] On invariant manifolds of nonholonomic systems
    Valery V. Kozlov
    Regular and Chaotic Dynamics, 2012, 17 : 131 - 141