Robust multivariate density estimation under Gaussian noise

被引:0
|
作者
Jitka Kostková
Jan Flusser
机构
[1] Czech Academy of Sciences,Institute of Information Theory and Automation
[2] University of Economics,Faculty of Management
关键词
Multivariate density; Gaussian additive noise; Noise-robust estimation; Moments; Invariant characteristics;
D O I
暂无
中图分类号
学科分类号
摘要
Observation of random variables is often corrupted by additive Gaussian noise. Noise-reducing data processing is time-consuming and may introduce unwanted artifacts. In this paper, a novel approach to description of random variables insensitive with respect to Gaussian noise is presented. The proposed quantities represent the probability density function of the variable to be observed, while noise estimation, deconvolution or denoising are avoided. Projection operators are constructed, that divide the probability density function into a non-Gaussian and a Gaussian part. The Gaussian part is subsequently removed by modifying the characteristic function to ensure the invariance. The descriptors are based on the moments of the probability density function of the noisy random variable. The invariance property and the performance of the proposed method are demonstrated on real image data.
引用
收藏
页码:1113 / 1143
页数:30
相关论文
共 50 条
  • [21] Robust direction-of-arrival estimation in non-Gaussian noise
    Yardimci, Y
    Cetin, AE
    Cadzow, JA
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (05) : 1443 - 1451
  • [22] Entropy estimation for robust image segmentation in presence of non Gaussian noise
    de la Rosa, Jose I.
    Gutierrez, Osvaldo
    Villa-Hernandez, Jesus
    Moreno, Gamaliel
    Gonzalez, Efren
    Alaniz, Daniel
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (05) : 6991 - 7021
  • [23] Robust direction-of-arrival estimation in non-Gaussian noise
    Bilkent Univ, Ankara, Turkey
    IEEE Trans Signal Process, 5 (1443-1451):
  • [24] Robust Blind Spectral Estimation in the Presence of Non-Gaussian Noise
    Kees, Joel T.
    Ernst, Joseph M.
    Headley, William C.
    Beex, A. A.
    MILCOM 2017 - 2017 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2017, : 629 - 634
  • [25] Multivariate mixtures of Erlangs for density estimation under censoring
    Roel Verbelen
    Katrien Antonio
    Gerda Claeskens
    Lifetime Data Analysis, 2016, 22 : 429 - 455
  • [26] Multivariate mixtures of Erlangs for density estimation under censoring
    Verbelen, Roel
    Antonio, Katrien
    Claeskens, Gerda
    LIFETIME DATA ANALYSIS, 2016, 22 (03) : 429 - 455
  • [27] Robust Frequency Estimation Under Additive Mixture Noise
    Chen, Yuan
    Tian, Yulu
    Zhang, Dingfan
    Huang, Longting
    Xu, Jingxin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 1671 - 1684
  • [28] Minimum Error Entropy Estimation Under Contaminated Gaussian Noise
    Lopez, Carlos Alejandro
    de Cabrera, Ferran
    Riba, Jaume
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1457 - 1461
  • [29] Student-t variational autoencoder for robust multivariate density estimation
    Takahashi H.
    Iwata T.
    Yamanaka Y.
    Yamada M.
    Yagi S.
    Kashima H.
    Transactions of the Japanese Society for Artificial Intelligence, 2021, 36 (03)
  • [30] Asymptotic nonequivalence of density estimation and Gaussian white noise for small densities
    Ray, Kolyan
    Schmidt-Hieber, Johannes
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04): : 2195 - 2208