Lagrangian Floer Superpotentials and Crepant Resolutions for Toric Orbifolds

被引:0
|
作者
Kwokwai Chan
Cheol-Hyun Cho
Siu-Cheong Lau
Hsian-Hua Tseng
机构
[1] The Chinese University of Hong Kong,Department of Mathematics
[2] Seoul National University,Department of Mathematical Sciences, Research institute of Mathematics
[3] Harvard University,Department of Mathematics
[4] Ohio State University,Department of Mathematics
来源
Communications in Mathematical Physics | 2014年 / 328卷
关键词
Twisted Sector; Maslov Index; Toric Manifold; Weighted Projective Space; Crepant Resolution;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{X}}$$\end{document} and that of its toric crepant resolution Y coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Ruan’s original CRC (Gromov-Witten theory of spin curves and orbifolds, contemp math, Amer. Math. Soc., Providence, RI, pp 117–126, 2006). We prove the open CRC for the weighted projective spaces X=P(1,…,1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{X} = \mathbb{P}(1,\ldots,1, n)}$$\end{document} using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.
引用
收藏
页码:83 / 130
页数:47
相关论文
共 50 条
  • [11] LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS, I
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    DUKE MATHEMATICAL JOURNAL, 2010, 151 (01) : 23 - 174
  • [12] Non-commutative crepant resolutions for some toric singularities. II
    Spenko, Spela
    Van den Bergh, Michel
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (01) : 73 - 103
  • [13] All toric local complete intersection singularities admit projective crepant resolutions
    Dais, DI
    Haase, C
    Ziegler, GM
    TOHOKU MATHEMATICAL JOURNAL, 2001, 53 (01) : 95 - 107
  • [14] LAGRANGIAN FLOER THEORY AND MIRROR SYMMETRY ON COMPACT TORIC MANIFOLDS
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    ASTERISQUE, 2016, (376) : 1 - +
  • [15] Existence of crepant resolutions
    Hayashi, Toshihiro
    Ito, Yukari
    Sekiya, Yuhi
    HIGHER DIMENSIONAL ALGEBRAIC GEOMETRY IN HONOUR OF PROFESSOR YUJIRO KAWAMATA'S SIXTIETH BIRTHDAY, 2017, 74 : 185 - 202
  • [16] Lagrangian Floer theory on compact toric manifolds II: bulk deformations
    Kenji Fukaya
    Yong-Geun Oh
    Hiroshi Ohta
    Kaoru Ono
    Selecta Mathematica , 2011, 17 : 609 - 711
  • [17] Lagrangian Floer theory on compact toric manifolds II: bulk deformations
    Fukaya, Kenji
    Oh, Yong-Geun
    Ohta, Hiroshi
    Ono, Kaoru
    SELECTA MATHEMATICA-NEW SERIES, 2011, 17 (03): : 609 - 711
  • [18] Wonderful resolutions and categorical crepant resolutions of singularities
    Abuaf, Roland
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 708 : 115 - 141
  • [19] Crepant resolutions and open strings
    Brini, Andrea
    Cavalieri, Renzo
    Ross, Dustin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 755 : 191 - 245
  • [20] Brauer groups and crepant resolutions
    Baranovsky, Vladimir
    Petrov, Tihomir
    ADVANCES IN MATHEMATICS, 2007, 209 (02) : 547 - 560