On the lower bounds of the partial sums of a Dirichlet series
被引:0
|
作者:
G. Mora
论文数: 0引用数: 0
h-index: 0
机构:Universidad de Alicante,
G. Mora
E. Benítez
论文数: 0引用数: 0
h-index: 0
机构:Universidad de Alicante,
E. Benítez
机构:
[1] Universidad de Alicante,
[2] Departamento de Matemáticas,undefined
[3] Facultad de Ciencias II,undefined
[4] Universidad Nacional de Asunción,undefined
[5] Facultad de Ciencias Exactas y Naturales.,undefined
来源:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
|
2022年
/
116卷
关键词:
Dirichlet series;
Zeros of partial sums of Dirichlet series;
Henry lower bound;
30B50;
11M41;
30D05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper it is shown that for the ordinary Dirichlet series, ∑j=0∞αj(j+1)s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum _{j=0}^{\infty }\frac{\alpha _{j}}{(j+1)^{s}}$$\end{document}, α0=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha _{0}=1$$\end{document}, of a class, say P\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {P}}$$\end{document}, that contains in particular the series that define the Riemann zeta and the Dirichlet eta functions, there exists limn→∞ρn/n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lim _{n\rightarrow \infty }\rho _{n}/n$$\end{document}, where the ρn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho _{n}$$\end{document}’s are the Henry lower bounds of the partial sums of the given Dirichlet series, Pn(s)=∑j=0n-1αj(j+1)s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_{n}(s)=\sum _{j=0}^{n-1}\frac{\alpha _{j}}{(j+1)^{s}}$$\end{document}, n>2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n>2$$\end{document}. Likewise it is given an estimate of the above limit. For the series of P\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {P}}$$\end{document} having positive coefficients it is shown the existence of the limn→∞aPn(s)/n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lim _{n\rightarrow \infty }a_{P_{n}(s)}/n$$\end{document}, where the aPn(s)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a_{P_{n}(s)}$$\end{document}’s are the lowest bounds of the real parts of the zeros of the partial sums. Furthermore it has been proved that limn→∞aPn(s)/n=limn→∞ρn/n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lim _{n\rightarrow \infty }a_{P_{n}(s)}/n=\lim _{n\rightarrow \infty }\rho _{n}/n$$\end{document}.