On the lower bounds of the partial sums of a Dirichlet series

被引:0
|
作者
G. Mora
E. Benítez
机构
[1] Universidad de Alicante,
[2] Departamento de Matemáticas,undefined
[3] Facultad de Ciencias II,undefined
[4] Universidad Nacional de Asunción,undefined
[5] Facultad de Ciencias Exactas y Naturales.,undefined
关键词
Dirichlet series; Zeros of partial sums of Dirichlet series; Henry lower bound; 30B50; 11M41; 30D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper it is shown that for the ordinary Dirichlet series, ∑j=0∞αj(j+1)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{j=0}^{\infty }\frac{\alpha _{j}}{(j+1)^{s}}$$\end{document}, α0=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{0}=1$$\end{document}, of a class, say P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document}, that contains in particular the series that define the Riemann zeta and the Dirichlet eta functions, there exists limn→∞ρn/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }\rho _{n}/n$$\end{document}, where the ρn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{n}$$\end{document}’s are the Henry lower bounds of the partial sums of the given Dirichlet series, Pn(s)=∑j=0n-1αj(j+1)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}(s)=\sum _{j=0}^{n-1}\frac{\alpha _{j}}{(j+1)^{s}}$$\end{document}, n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document}. Likewise it is given an estimate of the above limit. For the series of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} having positive coefficients it is shown the existence of the limn→∞aPn(s)/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }a_{P_{n}(s)}/n$$\end{document}, where the aPn(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{P_{n}(s)}$$\end{document}’s are the lowest bounds of the real parts of the zeros of the partial sums. Furthermore it has been proved that limn→∞aPn(s)/n=limn→∞ρn/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }a_{P_{n}(s)}/n=\lim _{n\rightarrow \infty }\rho _{n}/n$$\end{document}.
引用
收藏
相关论文
共 50 条