Shortest path and Schramm-Loewner Evolution

被引:0
|
作者
N. Posé
K. J. Schrenk
N. A. M. Araújo
H. J. Herrmann
机构
[1] Computational Physics for Engineering Materials,Departamento de Física
[2] IfB,undefined
[3] Universidade Federal do Ceará,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss.
引用
收藏
相关论文
共 50 条
  • [21] Six-vertex model and Schramm-Loewner evolution
    Kenyon, Richard
    Miller, Jason
    Sheffield, Scott
    Wilson, David B.
    PHYSICAL REVIEW E, 2017, 95 (05)
  • [22] ALMOST SURE MULTIFRACTAL SPECTRUM OF SCHRAMM-LOEWNER EVOLUTION
    Gwynne, Ewain
    Miller, Jason
    Sun, Xin
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (06) : 1099 - 1237
  • [23] Decomposition of Schramm-Loewner evolution along its curve
    Zhan, Dapeng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (01) : 129 - 152
  • [24] Multifractal Analysis of the Reverse Flow for the Schramm-Loewner Evolution
    Lawler, Gregory F.
    FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 73 - 107
  • [25] N-sided radial Schramm-Loewner evolution
    Healey, Vivian Olsiewski
    Lawler, Gregory F.
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 181 (1-3) : 451 - 488
  • [26] MINKOWSKI CONTENT AND NATURAL PARAMETERIZATION FOR THE SCHRAMM-LOEWNER EVOLUTION
    Lawler, Gregory F.
    Rezaei, Mohammad A.
    ANNALS OF PROBABILITY, 2015, 43 (03): : 1082 - 1120
  • [27] DUALITY OF SCHRAMM-LOEWNER EVOLUTIONS
    Dubedat, Julien
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2009, 42 (05): : 697 - 724
  • [28] On multiple Schramm-Loewner evolutions
    Graham, K.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [29] Observation of Schramm-Loewner evolution on the geometrical clusters of the Ising model
    Najafi, M. N.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [30] Theta-point polymers in the plane and Schramm-Loewner evolution
    Gherardi, M.
    PHYSICAL REVIEW E, 2013, 88 (03):