Abundant and ample straight left orders

被引:0
|
作者
Victoria Gould
机构
[1] University of York Heslington York,Department of Mathematics
[2] YO10 5DD,undefined
关键词
stratification; order; group inverse; semigroup of (left) quotients; straightness; abundant; ample;
D O I
10.1023/A:1025940127058
中图分类号
学科分类号
摘要
A subsemigroup S of a semigroup Q is a straight left order in Q and Q is a semigroup of straight left quotients of S if every q ∈ Q can be written as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$a^\#b$$ \end{document} for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$a,b \in S$$ \end{document} with a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}$$ \end{document}b in Q and if, in addition, every element of S that is square cancellable lies in a subgroup of Q. Here a♯ denotes the group inverse of a in some (hence any) subgroup of Q. If S is a straight left order in Q, then Q is necessarily regular; the idea is that Q has a better understood structure than that of S. Necessary and sufficient conditions exist on a semigroup S for S to be a straight left order. The technique is to consider a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document} of preorders on S. If such a pair satisfies conditions mimicking those satisfied by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$( \leqslant _\mathcal{L} , \leqslant _\mathcal{R} )$$ \end{document} on a regular semigroup, and if certain subsemigroups of S are right reversible, then S is a straight left order. The conditions required for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document} to satisfy are somewhat lengthy. In this paper we aim to circumvent some of these by specialising in two ways. First we consider only fully stratified left orders, that is, the case where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P} = ( \leqslant _{\mathcal{L}^ * } , \leqslant _{\mathcal{R}^ * } )$$ \end{document} (certainly the most natural choice for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}) and the other is to insist that S be abundant, that is, every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}^ * $$ \end{document}-class and every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{L}^ * $$ \end{document}-class of S contains an idempotent.
引用
收藏
页码:171 / 179
页数:8
相关论文
共 50 条
  • [31] Semigroups of straight left inverse quotients
    Victoria Gould
    Georgia Schneider
    Semigroup Forum, 2022, 105 : 434 - 465
  • [32] Regular left-orders on groups
    Antolin, Yago
    Rivas, Cristobal
    Su, Hang Lu
    JOURNAL OF COMBINATORIAL ALGEBRA, 2022, 6 (3-4) : 265 - 314
  • [33] Left Absorption in Products of Countable Orders
    Ervin, Garrett
    Gu, Ethan
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2024,
  • [34] ON ORDERS IN PRINCIPAL LEFT IDEAL RINGS AND LEFT ELEMENTAL ANNIHILATOR RINGS
    LUEDEMAN, JK
    MATHEMATISCHE ANNALEN, 1970, 185 (04) : 309 - &
  • [35] FUZZY GOOD CONGRUENCES ON LEFT SEMIPERFECT ABUNDANT SEMIGROUPS
    Li, Chunhua
    Liu, Ergen
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (09) : 3090 - 3103
  • [36] LEFT ORDERS IN STRONGLY REGULAR-RINGS
    ANH, PN
    MARKI, L
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 : 303 - 310
  • [37] LEFT ORDERS IN INVERSE OMEGA-SEMIGROUPS
    GOULD, V
    QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (161): : 21 - 44
  • [38] LEFT ORDERS IN ABELIAN REGULAR-RINGS
    TALWAR, S
    MATHEMATIKA, 1993, 40 (80) : 256 - 274
  • [39] Fountain–Gould Left Orders for Associative Pairs
    José A. Anquela*
    Teresa Cortés*
    Miguel Gómez Lozano**
    Mercedes Siles Molina***
    Acta Mathematica Sinica, 2006, 22 : 641 - 652