The Kato square root problem for higher order elliptic operators and systems on $ \Bbb R^n $

被引:3
|
作者
Pascal Auscher
Steve Hofmann
Alan McIntosh
Philippe Tchamitchian
机构
[1] LAMIA,
[2] CNRS,undefined
[3] FRE 2270,undefined
[4] Université de Picardie-Jules Verne,undefined
[5] 33,undefined
[6] rue Saint Leu,undefined
[7] 80039 Amiens Cedex 1,undefined
[8] e-mail: auscher@mathinfo.u-picardie.fr,undefined
[9] Department of Mathematics,undefined
[10] University of Missouri-Columbia,undefined
[11] Columbia,undefined
[12] MO 65211,undefined
[13] e-mail: hofmann@math.missouri.edu,undefined
[14] Centre for Mathematics and its Applications,undefined
[15] Australian National University,undefined
[16] Canberra,undefined
[17] ACT 0200,undefined
[18] e-mail: alan@maths.anu.edu.au,undefined
[19] Faculté des Sciences et,undefined
[20] Techniques de St.-Jérome,undefined
[21] Université d'Aix-Marseille III,undefined
[22] Avenue Escadrille Normandie-Niemen,undefined
[23] 13397 Marseille Cedex 20,undefined
[24] and LATP,undefined
[25] CNRS,undefined
[26] UMR 6632,undefined
[27] e-mail: tchamphi@math.u-3mrs.fr,undefined
来源
关键词
Key words: Elliptic systems, Gårding inequality, Kato problem, square roots.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the Kato conjecture for elliptic operators and N×N-systems in divergence form of arbitrary order 2m on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Bbb R^n $\end{document}. More precisely, we assume the coefficients to be bounded measurable and the ellipticity is taken in the sense of a Gårding inequality. We identify the domain of their square roots as the natural Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ H^m(\Bbb R^n,\Bbb C^N) $\end{document}. We also make some remarks on the relation between various ellipticity conditions and Gårding inequality.
引用
收藏
页码:361 / 385
页数:24
相关论文
共 50 条
  • [21] On the Kato square root problem
    Arlinskii, Yury
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [22] L~p-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on R~n
    Wenyu Tao
    Yanping Chen
    Yayuan Xiao
    Liwei Wang
    ScienceChina(Mathematics), 2020, 63 (03) : 575 - 594
  • [23] THE SQUARE ROOT PROBLEM FOR ELLIPTIC-OPERATORS - A SURVEY
    MCINTOSH, A
    LECTURE NOTES IN MATHEMATICS, 1990, 1450 : 122 - 140
  • [24] The Kato square root problem on submanifolds
    Morris, Andrew J.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 879 - 910
  • [25] Lp-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on ℝn
    Wenyu Tao
    Yanping Chen
    Yayuan Xiao
    Liwei Wang
    Science China Mathematics, 2020, 63 : 575 - 594
  • [26] Algebraic sum of unbounded normal operators and the square root problem of Kato.
    Diagana, T
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2003, 110 : 269 - 275
  • [27] ON THE KATO PROBLEM AND EXTENSIONS FOR DEGENERATE ELLIPTIC OPERATORS
    Cruz-Uribe, David
    Maria Martell, Jose
    Rios, Cristian
    ANALYSIS & PDE, 2018, 11 (03): : 609 - 660
  • [29] Gaussian bounds for higher-order elliptic differential operators with Kato type potentials
    Deng, Qingquan
    Ding, Yong
    Yao, Xiaohua
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 5377 - 5397
  • [30] The Kato square root problem on locally uniform domains
    Bechtel, Sebastian
    Egert, Moritz
    Haller-Dintelmann, Robert
    ADVANCES IN MATHEMATICS, 2020, 375